
16 Multiple Integration
Chapter Preview   We have now generalized  limits  and derivatives  to functions  of several  

variables.  The next step is to carry out a similar  process  with respect  to integration.  As you know,  single  (one-

variable)  integrals  are developed  from Riemann  sums and are used to compute  areas of regions  in ℝ2. In an 

analogous  way, we use Riemann  sums to develop  double  (two-variable)  and triple  (three-variable)  integrals,  

which  are used to compute  volumes  of solid regions  in ℝ3. These  multiple  integrals  have many  applications  in 

statistics,  science,  and engineering,  including  calculating  the mass,  the center  of mass,  and moments  of inertia  

of solids  with a variable  density.  Another  significant  development  in this chapter  is the appearance  of cylindri -

cal and spherical  coordinates.  These  alternative  coordinate  systems  often simplify  the evaluation  of integrals  in 

three-dimensional  space.  The chapter  closes  with the two- and three-dimensional  versions  of the substitution  

(change  of variables)  rule.  The overall  lesson  of the chapter  is that we can integrate  functions  over most  geomet -

rical objects,  from intervals  on the x-axis to regions  in the plane  bounded  by curves  to complicated  three-

dimensional  solids.

16.1 Double Integrals over Rectangular Regions

In Chapter  15 the concept  of differentiation  was extended  to functions  of several  variables.  In this chapter  we 

extend  integration  to multivariable  functions.  By the close of the chapter,  we will have completed  Table  16.1,  

which  is a basic  road map for calculus.

Table 16.1

Derivatives Integrals

Single variable : f (x) f ' (x) 
a

b

f (x) d x

Several variables : f (x , y) and f (x , y , z)
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z
 

R

f (x, y) d A,   
D

f (x, y , z) d V

Volumes of Solids  »

The problem  of finding  the net area of a region  bounded  by a curve  led to the definite  integral  in Chapter  5. 

Recall  that we began  that discussion  by approximating  the region  with a collection  of rectangles  and then 

formed  a Riemann  sum of the areas of the rectangles.  Under  appropriate  conditions,  as the number  of rectan -

gles increases,  the sum approaches  the value of the definite  integral,  which  is the net area of the region.

We now carry out an analogous  procedure  with surfaces  defined  by functions  of the form z = f (x, y), 

where,  for the moment,  we assume  f (x, y) ≥ 0 on a region  R in the xy-plane  (Figure  16.1 ). The goal is to 

determine  the volume  of the solid bounded  by the surface  and R. In general  terms,  the solid is first approxi -

mated  by boxes.  The sum of the volumes  of these boxes,  which  is a Riemann  sum, approximates  the volume  of 

the solid.  Under  appropriate  conditions,  as the number  of boxes  increases,  the approximations  converge  to the 

value of a double  integral , which  is the volume  of the solid.
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show solid

show boxes

show grids

Figure 16.1

We assume  z = f (x, y) is a nonnegative  continuous  function  on a rectangular region  

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. A partition of R is formed  by dividing  R into n rectangular  regions  using lines 

running  parallel  to the x- and y-axes (not necessarily  uniformly  spaced).  The subregions  may be numbered  in 

any systematic  way; for example,  left to right,  and then bottom  to top. The side lengths  of the kth rectangle  are 

denoted  Δxk  and Δyk , so the area of the kth subregion  is ΔAk = Δxk Δyk . We also let (xk
* , yk

*) be any point  in the 

kth subregion,  for 1 ≤ k ≤ n (Figure  16.2 ).

Note  »

2 Chapter 16 •  Multiple Integration

Copyright © 2019 Pearson Education, Inc.



show partition

number of x divisions

number of y divisions

k th subregion

k

a

b

c

d

show labels

show grids

Figure 16.2

To approximate  the volume  of the solid bounded  by the surface  z = f (x, y) and the region  R, we construct

boxes  on each of the n subregions;  each box has a height  of f (xk
* , yk

*) and a base with area ΔAk , for 1 ≤ k ≤ n 

(Figure  16.3 ). Therefore,  the volume  of the kth box is 

f (xk
* , yk

*) ΔAk = f (xk
* , yk

*) Δxk Δyk .

The sum of the volumes  of the n boxes  gives an approximation  to the volume  of the solid:

V ≈ 
k=1

n

f (xk
* , yk

*) ΔAk .
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Figure 16.3

Quick Check 1   Explain  why the sum for the volume  is an approximation.  How can the approximation  be 

improved?   ◆
Answer  »

The sum gives the volume  of a collection  of rectangular  boxes  and these boxes  do not exactly  
fill the solid region  under  the surface.  The approximation  is improved  by using more boxes.

We now let Δ be the maximum  length  of the diagonals  of the rectangular  subregions  in the partition.  As

Δ→ 0, the areas of all subregions  approach  zero (ΔAk → 0) and the number  of subregions  increases  (n →∞). If 

the approximations  given by these Riemann  sums have a limit  as Δ→ 0, then we define  the volume  of the solid 

to be that limit  (Figure  16.4 ). 
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Figure 16.4

DEFINITION Double  Integrals

A function  f  defined  on a rectangular  region  R in the x y-plane  is integrable on R if 

lim
Δ→0


k=1

n

f (xk
* , yk

*) ΔAk  exists  for all partitions  of R and for all choices  of (xk
* , yk

*) within  those  

partitions.  The limit  is the double  integral  of f  over R, which  we write  

 
R

f (x, y) d A = lim
Δ→0


k=1

n

f (xk
* , yk

*) ΔAk .

Note  »

The  functions  that  we  encounter  in this  book  are  integrable.  Advanced  

methods  are  needed  to prove  that  continuous  functions  and  many  functions  

with  finite  discontinuities  are  also  integrable.

If f  is nonnegative  on R, then the double  integral  equals  the volume  of the solid bounded  by z = f (x, y) 

and the x y-plane  over R. If f  is negative  on parts  of R, the value of the double  integral  may be zero or negative,  

and the result  is interpreted  as a net volume  (in analogy  with net area  for single  variable  integrals).  

Iterated Integrals  »

Evaluating  double  integrals  using  limits  of Riemann  sums is tedious  and rarely  done.  Fortunately,  there is a 

practical  method  for evaluating  double  integrals  that is based  on the general  slicing  method  (Section  6.3).  An 

example  illustrates  the technique.
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Note  »

Suppose  we wish to compute  the volume  of the solid region  bounded  by the plane  z = f (x, y) = 6 - 2 x - y  

over the rectangular  region  R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2} (Figure  16.5 ). 

x

show grids

Figure 16.5

By definition,  the volume  is given by the double  integral  

V =  
R

f (x, y) d A =  
R

(6 - 2 x - y) d A.

According  to the General  Slicing  Method  (see Note  above),  we can compute  this volume  by taking  slices  

through  the solid parallel  to the y z-plane  (Figure  16.5).  The slice at the point  x  has a cross-sectional  area 

denoted  A(x). In general,  as x  varies,  the area A(x) also changes,  so we integrate  these cross-sectional  areas from 

x = 0 to x = 1 to obtain  the volume  

V = 
0

1

A(x) d x.

The important  observation  is that for a fixed value of x, A(x) is the area of the plane region  under  the 

curve z = 6 - 2 x - y . This area is computed  by integrating  f  with respect  to y  from y = 0 to y = 2, holding  x  fixed;  

that is, 
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A(x) = 
0

2

(6 - 2 x - y) d y ,

where  0 ≤ x ≤ 1, and x  is treated  as a constant  in the integration.  Substituting  for A(x), we have 

V = 
0

1

A(x) d x = 
0

1


0

2

(6 - 2 x - y) d y

A(x)

d x.

The expression  that appears  on the right side of this equation  is called  an iterated  integral  (meaning  

repeated  integral).  We first evaluate  the inner  integral  with respect  to y  holding  x  fixed;  the result  is a function  of 

x. Then,  the outer  integral  is evaluated  with respect  to x; the result  is a real number,  which  is the volume  of the 

solid in Figure  16.5.  Both of these integrals  are ordinary  one-variable  integrals.

EXAMPLE  1 Evaluating  an iterated  integral

Evaluate  V = 
0

1

A(x) d x, where  A(x) = 
0

2

(6 - 2 x - y) d y .

SOLUTION   »

Using the Fundamental  Theorem  of Calculus,  holding  x  constant,  we have 

A(x) = 
0

2

(6 - 2 x - y) d y

= 6 y - 2 x y -
y2

2 0

2

Evaluate integral with respect to y ; x is constant .

= (12 - 4 x - 2) - 0 Simplify ; limits are in y .

= 10 - 4 x. Simplify .

Substituting  A(x) = 10 - 4 x  into the volume  integral,  we have 

V = 
0

1

A(x) d x

= 
0

1

(10 - 4 x) d x Substitute for A(x).

= 10 x - 2 x2
0

1
Evaluate integral with respect to x.

= 8. Simplify .

Related  Exercises  10, 25  ◆
EXAMPLE  2 Same double  integral,  different  order

Example  1 used slices  through  the solid parallel  to the y z-plane.  Compute  the volume  of the same solid using  

slices through  the solid parallel  to the x z-plane,  for 0 ≤ y ≤ 2 (Figure  16.6 ).
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y

show grids

Figure 16.6

SOLUTION   »

In this case,  A(y) is the area of a slice through  the solid for a fixed value of y  in the interval  0 ≤ y ≤ 2. This area is 

computed  by integrating  z = 6 - 2 x - y  from x = 0 to x = 1, holding  y  fixed;  that is,  

A(y) = 
0

1

(6 - 2 x - y) d x,

where  0 ≤ y ≤ 2.

Using the General  Slicing  Method  again,  the volume  is 
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V = 
0

2

A(y) d y General slicing method

= 
0

2


0

1

(6 - 2 x - y) d x

A(y )

d y Substitute for A(y).

= 
0

26 x - x2 - y x
0

1 d y Evaluate inner integral with respect to x; y is constant .

= 
0

2

(5 - y) d y Simplify ; limits are in x.

= 5 y -
y2

2 0

2

Evaluate outer integral with respect to y .

= 8. Simplify .

Related  Exercise  37  ◆
Several  important  comments  are in order.  First,  the two iterated  integrals  give the same value for the 

double  integral.  Second,  the notation  of the iterated  integral  must  be used carefully.  When  we write  


c

d


a

b

f (x, y) d x d y , it means  
c

d


a

b

f (x, y) d x d y . The inner integral  with respect  to x  is evaluated  first,  

holding  y  fixed,  and the variable  runs from x = a to x = b. The result  of that integration  is a constant  or a func-

tion of y , which  is then integrated  in the outer integral,  with the variable  running  from y = c  to y = d . The order  

of integration  is signified  by the order  of d x  and d y .

Similarly,  
a

b


c

d

f (x, y) d y d x  means  
a

b


c

d

f (x, y) d y d x. The inner  integral  with respect  to y  is 

evaluated  first,  holding  x  fixed.  The result  is then integrated  with respect  to x. In both cases,  the limits  of integra -

tion in the iterated  integrals  determine  the boundaries  of the rectangular  region  of integration .

Examples  1 and 2 illustrate  one version  of Fubini’s  Theorem , a deep result  that relates  double  integrals  to 

iterated  integrals.  The first version  of the theorem  applies  to double  integrals  over rectangular  regions.

Quick Check 2   Consider  the integral  
3

4


1

2

f (x, y) d x d y . Give the limits  of integration  and the variable  

of integration  for the first (inner)  integral  and the second  (outer)  integral.  Sketch  the region  of integration.   

◆
Answer  »

Inner integral:  x  runs from x = 1 to x = 2; outer  integral:  y  runs from y = 3 to y = 4. The region  

is the rectangle  {(x, y) : 1 ≤ x ≤ 2, 3 ≤ y ≤ 4}.

THEOREM  16.1 (Fubini)  Double  Integrals  over Rectangular  Regions

Let f  be continuous  on the rectangular  region  R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. The double  integral  

of f  over R may be evaluated  by either  of two iterated  integrals:  

 
R

f (x, y) d A = 
c

d


a

b

f (x, y) d x d y = 
a

b


c

d

f (x, y) d y d x.

Note  »
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The  area  of the  k th rectangular  subregion  in the  partition  is ΔAk = Δxk Δyk , 

where  Δxk  and  Δyk  are  the  lengths  of the  sides  of that  rectangle.  Accordingly,  

the  element  of area  in the  double  integral  d A  becomes  d x d y  or  d y d x  in the  

iterated  integral.

The importance  of Fubini’s  Theorem  is twofold:  It says that double  integrals  may be evaluated  by iterated  

integrals.  It also says that the order  of integration  in the iterated  integrals  does not matter  (although  in practice,

one order  of integration  is often easier  to use than the other).

EXAMPLE  3 A double  integral

Find the volume  of the solid bounded  by the surface  z = 4 + 9 x2 y2 over the region  

R = {(x, y) : -1 ≤ x ≤ 1, 0 ≤ y ≤ 2}. Use both possible  orders  of integration.

SOLUTION   »

Because  f (x, y) > 0 on R, the volume  of the region  is given by the double  integral   
R

4 + 9 x2 y2 d A. By 

Fubini's  Theorem,  the double  integral  is evaluated  as an iterated  integral.  If we first integrate  with respect  to x, 

the area of a cross  section  of the solid for a fixed value of y  is given by A(y) (Figure  16.7 ). The volume  of the 

region  is 

 
R

4 + 9 x2 y2 d A = 
0

2


-1

1 4 + 9 x2 y2 d x

A(y )

d y Convert to an iterated integral .

= 
0

24 x + 3 x3 y2
-1

1

d y
Evaluate inner integral

with respect to x.

= 
0

28 + 6 y2 d y Simplify .

= 8 y + 2 y3
0

2 Evaluate outer integral

with respect to y .

= 32. Simplify .

Alternatively,  if we integrate  first with respect  to y , the area of a cross  section  of the solid for a fixed value 

of x  is given by A(x) (Figure  16.7).  The volume  of the region  is 

 
R

4 + 9 x2 y2 d A = 
-1

1


0

24 + 9 x2 y2 d y

A(x)

d x Convert to an iterated integral .

= 
-1

1 4 y + 3 x2 y3
0

2

d x
Evaluate inner integral

with respect to y .

= 
-1

1 8 + 24 x2 d x Simplify .

= 8 x + 8 x3
-1

1
= 32.

Evaluate outer integral

with respect to x.
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∫ c
d
∫ a
bf (x, y ) d x d y

∫ a
b
∫ c
df (x, y ) d y d x

y

show grids

Figure 16.7

As guaranteed  by Fubini's  Theorem,  the two iterated  integrals  agree,  both giving  the value of the double  

integral  and the volume  of the solid.

Related  Exercises  26, 39  ◆
Quick Check 3   Write  the iterated  integral  

-10

10


0

20x2 y + 2 x y3 d y d x  with the order  of integration  

reversed.   ◆
Answer  »


0

20


-10

10 x2 y + 2 x y3 d x d y

The following  example  shows  that sometimes  the order  of integration  must  be chosen  carefully  either  to 

save work or to make the integration  possible.

EXAMPLE  4 Choosing  a convenient  order of integration
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Evaluate   
R

y ex y d A, where  R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ ln 2}.

SOLUTION   »

The iterated  integral  
0

1


0

ln 2

y ex y d y d x  requires  first integrating  y ex y  with respect  to y , which  entails  

integration  by parts.  An easier  approach  is to integrate  first with respect  to x: 


0

ln 2


0

1

y ex y d x d y = 
0

ln 2

ex y

0

1

d y
Evaluate inner integral

with respect to x.

= 
0

ln 2

(ey - 1) d y Simplify .

= (ey - y)0ln 2 Evaluate outer integral

with respect to y .

= 1 - ln 2 Simplify .

Related  Exercises  41, 43  ◆
Average Value  »

The concept  of the average  value of a function  (Section  5.4) extends  naturally  to functions  of two variables.  

Recall  that the average  value of the integrable  function  f  over the interval  [a, b] is 

f =
1

b - a


a

b

f (x) d x.

To find the average  value of an integrable  function  f  over a region  R, we integrate  f  over R and divide  the result  

by the "size"  of R, which  is the area of R in the two-variable  case.

DEFINITION Average  Value  of a Function  over a Plane  Region

The average  value  of an integrable  function  f  over a region  R is 

f =
1

area of R
 

R

f (x, y) d A.

Note  »

EXAMPLE  5 Average  value

Find the average  value of the quantity  2 - x - y  over the square  R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2} (Figure  16.8 ).
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Figure 16.8

SOLUTION   »

The area of the region  R is 4. Letting  f (x, y) = 2 - x - y , the average  value of f  is 

1

area of R
 

R

f (x, y) d A =
1

4
 

R

(2 - x - y) d A

=
1

4


0

2


0

2

(2 - x - y) d x d y Convert to an iterated integral .

=
1

4


0

2

2 x -
x2

2
- x y

0

2

d y Evaluate inner integral with respect to x.

=
1

4


0

2

(2 - 2 y) d y Simplify .

= 0. Evaluate outer integral with respect to y .

Note  »

An average  value  of 0 means  that  over  the  region  R , the  volume  of the  solid  

above  the  xy-plane  and  below  the  surface  equals  the  volume  of the  solid  below  

the  xy-plane  and  above  the  surface.

Related  Exercise  46  ◆
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Exercises »

Getting  Started   »

Practice  Exercises   »

7–24.  Iterated  integrals   Evaluate  the following  iterated  integrals.

7. 
0

2


0

1

4 x y d x d y

8. 
1

2


0

13 x2 + 4 y3 d y d x

9. 
1

3


0

2

x2 y d x d y

10. 
0

3


-2

1

(2 x + 3 y) d x d y

11. 
1

3


0

π/2
x sin y d y d x

12. 
1

3


1

2y2 + y d x d y

13. 
1

4


0

4

u v d u d v

14. 
0

π/4


0

3

r sec θ d r dθ

15. 
1

ln 5


0

ln 3

ex+y d x d y

16. 
0

π/2


0

1

u v cos u2 v d u d v

17. 
0

1


0

1

t 2 es t d s d t

18. 
0

2


0

1 8 x y

1 + x4
d x d y

19. 
1

e


0

1

4 (p + q) ln q d p d q

20. 
0

1


0

π
y2 cos x y d x d y

21. 
1

2


1

2 x

x + y
d y d x

14 Chapter 16 •  Multiple Integration

Copyright © 2019 Pearson Education, Inc.



22. 
0

2


0

1

x5 y2 ex3 y 3

d y d x

23. 
0

1


1

4 3 y

x + y2
d x d y

24. 
0

1


0

1

x2 y2 ex3 y d x d y

25–35.  Double  integrals   Evaluate  each double  integral  over the region  R by converting  it to an iterated  

integral.

25.  
R

(x + 2 y) d A; R = {(x, y) : 0 ≤ x ≤ 3, 1 ≤ y ≤ 4}

26.  
R

x2 + x y d A; R = {(x, y) : 1 ≤ x ≤ 2, -1 ≤ y ≤ 1}

27.  
R

s2 t sin s t 2 d A; R = {(s, t ) : 0 ≤ s ≤ π, 0 ≤ t ≤ 1}

28.  
R

x

1 + x y
d A; R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

29.  
R

x

y
d A; R = {(x, y) : 0 ≤ x ≤ 1, 1 ≤ y ≤ 4}

30.  
R

x y sin x2 d A; R = (x, y) : 0 ≤ x ≤ π /2 , 0 ≤ y ≤ 1

31.  
R

ex+2 y d A; R = {(x, y) : 0 ≤ x ≤ ln 2, 1 ≤ y ≤ ln 3}

32.  
R

x2 - y22 d A; R = {(x, y) : -1 ≤ x ≤ 2, 0 ≤ y ≤ 1}

33.  
R

x5 - y52 d A; R = {(x, y) : 0 ≤ x ≤ 1, -1 ≤ y ≤ 1}

34.  
R

cos x y  d A; R = (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ π2 4

35.  
R

x3 y cos x2 y2 d A; R = (x, y) : 0 ≤ x ≤ π /2 , 0 ≤ y ≤ 1

36–39.  Volumes  of solids   Find the volume  of the following  solids.
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36. The solid beneath  the cylinder  f (x, y) = e-x  and above  the region  

R = {(x, y) : 0 ≤ x ≤ ln 4, -2 ≤ y ≤ 2}

37. The solid beneath  the plane f (x, y) = 24 - 3 x - 4 y  and above  the region  

R = {(x, y) : -1 ≤ x ≤ 3, 0 ≤ y ≤ 2}

38. The solid in the first octant  bounded  above  by the surface  z = 9 x y 1 - x2 4 - y2  and below  by 

the x y-plane

39. The solid in the first octant  bounded  by the surface  z = x y2 1 - x2  and the planes  z = 0 and y = 3

40–45.  Choose  a convenient  order   When  converted  to an iterated  integral,  the following  double  integrals  

are easier  to evaluate  in one order  than the other.  Find the best order  and evaluate  the integral.

40.  
R

y cos x y d A; R = (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ π
3


41.  
R

(y + 1) ex(y+1) d A; R = {(x, y) : 0 ≤ x ≤ 1, -1 ≤ y ≤ 1}
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42.  
R

x sec2 x y d A; R = (x, y) : 0 ≤ x ≤ π
3

, 0 ≤ y ≤ 1

43.  
R

6 x5 ex3 y d A; R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}

44.  
R

y3 sin x y2 d A; R = (x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ π
2


45.  
R

x

(1 + x y)2
d A; R = {(x, y) : 0 ≤ x ≤ 4, 1 ≤ y ≤ 2}

46–48.  Average  value   Compute  the average  value  of the following  functions  over the region  R.

46. f (x, y) = 4 - x - y ; R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}

47. f (x, y) = e-y ; R = {(x, y) : 0 ≤ x ≤ 6, 0 ≤ y ≤ ln 2}

48. f (x, y) = sin x sin y ; R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ π}
49. Average  value   Find the average  squared  distance  between  the points  of 

R = {(x, y) : -2 ≤ x ≤ 2, 0 ≤ y ≤ 2} and the origin.

50. Average  value   Find the average  squared  distance  between  the points  of 

R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3} and the point  (3, 3).

51. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. The region  of integration  for 
4

6


1

3

4 d x d y  is a square.

b. If f  is continuous  on ℝ2, then 
4

6


1

3

f (x, y) d x d y = 
4

6


1

3

f (x, y) d y d x.

c. If f  is continuous  on ℝ2, then 
4

6


1

3

f (x, y) d x d y = 
1

3


4

6

f (x, y) d y d x.

52. Symmetry  Evaluate  the following  integrals  using  symmetry  arguments.  Let 

R = {(x, y) : -a ≤ x ≤ a, -b ≤ y ≤ b}, where  a and b are positive  real numbers.

a.  
R

x y e-x2+y 2  d A

b.  
R

sin (x - y)

x2 + y2 + 1
d A

53. Computing  populations   The population  densities  in nine districts  of a rectangular  county  are 

shown  in the figure.

a. Use the fact that population = (population density )×(area) to estimate  the population  of the 

county.

b. Explain  how the calculation  of part (a) is related  to Riemann  sums and double  integrals.
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T 54. Approximating  water  volume   The varying  depth  of an 18 m×25 m swimming  pool is measured  in 

15 different  rectangles  of equal  area (see figure).  Approximate  the volume  of water  in the pool.

Explorations  and Challenges   »

55. Cylinders  Let S be the solid in ℝ3 between  the cylinder  z = f (x) and the region  

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, where  f (x) ≥ 0 on R. Explain  why 
c

d


a

b

f (x) d x d y  equals  the area 

of the constant  cross  section  of S multiplied  by (d - c), which  is the volume  of S.

56. Product  of integrals   Suppose  f (x, y) = g (x) h(y), where  g  and h are continuous  functions  for all 

real values  of x  and y .

a. Show that 
c

d


a

b

f (x, y) d x d y = 
a

b

g (x) d x 
c

d

h(y) d y . Interpret  this result  geometrically.

b. Write 
a

b

g (x) d x
2

 as an iterated  integral.

c. Use the result  of part (a) to evaluate  
0

2 π


10

30

e-4 y 2

cos x d y d x.

57. Solving  for a parameter   Let R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ a}. For what  values  of a, with 0 ≤ a ≤ π, is 

 
R

sin (x + y) d A equal  to 1?

58–59.  Zero average  value   Find the value  of a > 0 such that the average  value  of the following  functions  

over R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ a} is zero.
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58. f (x, y) = x + y - 8

59. f (x, y) = 4 - x2 - y2

60. Maximum  integral   Consider  the plane  x + 3 y + z = 6 over the rectangle  R with vertices  at (0, 0), 

(a, 0), (0, b), and (a, b), where  the vertex  (a, b) lies on the line where  the plane intersects  the xy-

plane (so a + 3 b = 6). Find the point  (a, b) for which  the volume  of the solid between  the plane and 

R is a maximum.

61. Density  and mass   Suppose  a thin rectangular  plate,  represented  by a region  R in the xy-plane,  has 

a density  given by the function  ρ(x, y); this function  gives the area density  in units  such as grams  per 

square  centimeter  g cm2. The mass of the plate is  
R

ρ(x, y) d A. Assume  

R = (x, y) : 0 ≤ x ≤ π
2

, 0 ≤ y ≤ π and find the mass of the plates  with the following  density  functions.  

a. ρ(x, y) = 1 + sin x

b. ρ(x, y) = 1 + sin y

c. ρ(x, y) = 1 + sin x sin y

62. Approximating  volume   Propose  a method  based  on Riemann  sums to approximate  the volume  of 

the shed shown  in the figure  (the peak of the roof is directly  above  the rear corner  of the shed).  Carry  

out the method  and provide  an estimate  of the volume.

63. An identity   Suppose  the second  partial  derivatives  of f  are continuous  on 

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. Simplify   
R

∂2 f

∂x ∂y
d A.
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