
15.8 Lagrange Multipliers

One of many  challenges  in economics  and marketing  is predicting  the behavior  of consumers.  Basic  models  of 

consumer  behavior  often involve  a utility  function  that expresses  consumers’  combined  preference  for several  

different  amenities.  For example,  a simple  utility  function  might  have the form U = f (ℓ, g ), where  ℓ represents  

the amount  of leisure  time and g  represents  the number  of consumable  goods.  The model  assumes  consumers  

try to maximize  their  utility  function,  but they do so under  certain  constraints  on the variables  of the problem.  

For example,  increasing  leisure  time may increase  utility,  but leisure  time produces  no income  for consumable  

goods.  Similarly,  consumable  goods  may also increase  utility,  but they require  income,  which  reduces  leisure  

time. We first develop  a general  method  for solving  such constrained  optimization  problems  and then return  to 

economics  problems  later in the section.

The Basic Idea  »

We start with a typical  constrained  optimization  problem  with two independent  variables  and give its method  

of solution;  a generalization  to more variables  then follows.  We seek maximum  and/or  minimum  values  of a 

differentiable  objective  function  f  with the restriction  that x  and y  must  lie on a constraint curve  C  in the xy-

plane given by g (x, y) = 0 (Figure  15.79 ).
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show surface
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Figure 15.79

Figure  15.80  shows  the detail  of a typical  situation  in which  we assume  the (green)  level  curves  of f  

have increasing  z-values  moving  away from the origin.  Now imagine  moving  along the (black)  constraint  curve  
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C : g (x, y) = 0 toward  the point  P(a, b). As we approach  P  (from  either  side),  the values  of f  evaluated  on C  

increase,  and as we move past P  along C , the values  of f  decrease.
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P .

Figure 15.80

What is special  about  the point  P  at which  f  appears  to have a local  maximum  value on C ? From Theo-

rem 15.12 (Section  15.5),  we know that at any point  P(a, b) on a level  curve  of f , the line tangent  to the level  

curve at P  is orthogonal  to ∇f (a, b). Figure  15.80 also suggests  that the line tangent  to the level  curve  of f  at P  is 

tangent  to the constraint  curve  C  at P . We prove  this fact shortly.  This observation  implies  that ∇f (a, b) is also 

orthogonal  to the line tangent  to C  at P(a, b).

We need one more observation.  The constraint  curve  C  is just one level  curve  of the function  z = g (x, y). 

Using Theorem  15.12 again,  the line tangent  to C  at P(a, b) is orthogonal  to ∇g (a, b). We have now found  two 

vectors  ∇f (a, b) and ∇g (a, b) that are both orthogonal  to the line tangent  to the level  curve  C  at P(a, b). There -

fore, these two gradient  vectors  are parallel.  These  properties  characterize  the point  P  at which  f  has a local  

extremum  on the constraint  curve.  They are the basis  of the method  of Lagrange  multipliers  that we now 

formalize.
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Lagrange Multipliers with Two Independent Variables »

The major  step in establishing  the method  of Lagrange  multipliers  is to prove  that Figure  15.80 is drawn  cor-

rectly;  that is, at the point  on the constraint  curve  C  where  f  has a local  extreme  value,  the line tangent  to C  is 

orthogonal  to ∇f (a, b) and ∇g (a, b).

THEOREM  15.16 Parallel  Gradients

Let f  be a differentiable  function  in a region  of ℝ2 that contains  the smooth  curve  C  given by 

g (x, y) = 0. Assume  f  has a local  extreme  value on C  at a point  P(a, b). Then ∇f (a, b) is orthogonal  

to the line tangent  to C  at P . Assuming  ∇g (a, b) ≠ 0, it follows  that there is a real number  λ (called  

a Lagrange  multiplier ) such that ∇f (a, b) = λ ∇g (a, b).

Note  »

The  Greek  lowercase  ℓ is λ; it is read  lambda.

Proof:  Because  C  is smooth  it can be expressed  parametrically  in the form C : r(t ) = 〈x(t ), y(t )〉, where  x  and y  

are differentiable  functions  on an interval  in t  that contains  t0 with P(a, b) = (x(t0), y(t0)). As we vary t  and 

follow  C , the rate of change  of f  is given by the Chain  Rule:  

d f

d t
=
∂ f

∂x

d x

d t
+
∂ f

∂y

d y

d t
= ∇f ·r ' (t ).

At the point  (x(t0), y(t0)) = (a, b) at which  f  has a local  maximum  or minimum  value,  we have 
d f

d t t=t0

= 0, 

which  implies  that ∇f (a, b) ·r ' (t0) = 0. Because  r ' (t ) is tangent  to C , the gradient  ∇f (a, b) is orthogonal  to the 

line tangent  to C  at P .

To prove  the second  assertion,  note that the constraint  curve  C  given by g (x, y) = 0 is also a level  curve  of 

the surface  z = g (x, y). Recall  that gradients  are orthogonal  to level  curves.  Therefore,  at the point  P(a, b), 

∇g (a, b) is orthogonal  to C  at (a, b). Because  both ∇f (a, b) and ∇g (a, b) are orthogonal  to C , the two gradients  

are parallel,  so there is a real number  λ such that ∇f (a, b) = λ ∇g (a, b).  ◆

Theorem  15.16 leads directly  to the method  of Lagrange  Multipliers,  which  produces  candidates  for local 

maxima  and minima  of f  on the constraint  curve.  In many  problems,  however,  the goal is to find absolute 

maxima  and minima  of f  on the constraint  curve.  Much  as we did with optimization  problems  in one variable,  

we find absolute  extrema  by examining  both local  extrema  and endpoints.  Several  different  cases  arise:

 If the constraint  curve  is bounded  (it lies within  a circle  of finite  radius)  and it closes  on itself  (for example,  

an ellipse),  then we know that the absolute  extrema  of f  exist.  In this case,  there are no endpoints  to 

consider,  and the absolute  extrema  are found  among  the local  extrema.

 If the constraint  curve  is bounded  and includes  its endpoints  but does not close on itself  (for example,  a 

closed  line segment),  then the absolute  extrema  of f  exist,  and we find them by examining  the local  extrema  

and the endpoints.

 In the case that the constraint  curve  is unbounded  (for example,  a line or a parabola)  or the curve  excludes  

one or both of its endpoints,  we have no guarantee  that absolute  extrema  exist.  We can find local  extrema,  

but they must  be examined  carefully  to determine  whether  they are, in fact,  absolute  extrema  (see Example  2 

and Exercise  65).

We deal first with the case of finding  absolute  extrema  on closed  and bounded  constraint  curves.
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Quick Check 1   It can be shown  that the function  f (x, y) = x2 + y2 attains  its minimum  value on the 

curve C : g (x, y) =
1

4
(x - 3)2 - y = 0 at the point  (1, 1). Verify  that ∇f (1, 1) and ∇g (1, 1) are parallel,  and 

that both vectors  are orthogonal  to the line tangent  to C  at (1, 1), thereby  confirming  Theorem  15.16.   ◆
Answer  »

Note that ∇f (1, 1) = 〈2 x, 2 y〉(1,1) = 〈2, 2〉 and ∇g (1, 1) =  1

2
(x - 3), -1

(1,1)

= 〈-1, -1〉, 
which  implies  the gradients  are multiples  of one another,  and therefore  parallel.  The 
equation  of the line tangent  to C  at (1, 1) is y = -x + 2; therefore  the vector  v = 〈1, -1〉 is 

parallel  to this tangent  line. Because  ∇f (1, 1) ·v = 0 and ∇g (1, 1) ·v = 0, both gradients  are 

orthogonal  to the tangent  line.

PROCEDURE Lagrange  Multipliers:  Absolute  Extrema  on Closed  and Bounded  Constraint  

Curves

Let the objective  function  f  and the constraint  function  g  be differentiable  on a region  of ℝ2 with 

∇g (x, y) ≠ 0 on the curve  g (x, y) = 0. To locate  the absolute  maximum  and minimum  values  of f  

subject  to the constraint  g (x, y) = 0, carry  out the following  steps.

1. Find the values  of x, y , and λ (if they exist)  that satisfy  the equations  

∇f (x, y) = λ ∇g (x, y) and g (x, y) = 0.

2. Evaluate  f  at the values  (x, y) found  in Step 1 and at the endpoints  of the constraint  curve  (if 

they exist).  Select  the largest  and smallest  corresponding  function  values,  which  are the absolute  

maximum  and minimum  values  of f  subject  to the constraint.

Notice  that ∇f = λ ∇g  is a vector  equation:  fx , fy  = λ gx , gy . It is satisfied  provided  fx = λ gx  and 

fy = λ gy . Therefore,  the crux of the method  is solving  the three equations  

fx = λ gx , fy = λ gy , and g (x, y) = 0

for the three variables  x, y , and λ.

Note  »

In principle , it is possible  to solve  a constrained  optimization  problem  by 

solving  the  constraint  equation  for  one  of the  variables  and  eliminating  that  

variable  in the  objective  function.  In practice,  this  method  is often  prohibitive,  

particularly  with  three  or more  variables  or two  or more  constraints.

EXAMPLE  1 Lagrange  multipliers  with two variables

Find the absolute  maximum  and minimum  values  of the objective  function  f (x, y) = x2 + y2 + 2, where  x  and y  

lie on the ellipse  C  given by g (x, y) = x2 + x y + y2 - 4 = 0.

SOLUTION   »

Because  C  is closed  and bounded,  the absolute  maximum  and minimum  values  of f  exist.  Figure  15.81a  

shows  the  paraboloid  z = f (x, y) above  the ellipse  C  in the xy-plane.  As the ellipse  is traversed,  the correspond -

ing function  values  on the surface  vary.  The goal is to find the maximum  and minimum  of these function  
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values.  An alternative  view is given in Figure  15.81b , where  we see the level  curves  of f  and the constraint  

curve C . As the ellipse  is traversed,  the values  of f  vary,  reaching  maximum  and minimum  values  along the way.

P

show surface

show grids

-2 -1

Constraint curve

C : g (x, y) =

At maximum and minimum

points , the level curve is tangent to

the constraint curve.

Maximum and

f occur at points

level curve is

constraint curve

(a)

Figure 15.81

Noting  that ∇f (x, y) = 〈2 x, 2 y〉 and ∇g (x, y) = 〈2 x + y , x + 2 y〉, the equations  that result  from ∇f = λ ∇g  

and the constraint  are 

4 x = λ (2 x + y)

fx = λ gx

, 2 y = λ (x + 2 y)

fy = λ gy

, and x2 + x y + y2 - 4 = 0

constraint g (x ,y ) = 0

.

Subtracting  the second  equation  from the first leads to 

(x - y) (2 - λ) = 0,

which  implies  that y = x, or λ = 2. In the case that y = x, the constraint  equation  simplifies  to 3 x2 - 4 = 0, or 

x = ±
2

3
. Therefore,  two candidates  for locations  of extreme  values  are 

2

3
,

2

3
 and -

2

3
, -

2

3
.

Substituting  λ = 2 into the first equation  leads to y = -x, and then the constraint  equation  simplifies  to 

x2 - 4 = 0, or x = ±2. These  values  give two additional  points  of interest,  (2, -2) and (-2, 2). Evaluating  f  at each 

of these points,  we find that f
2

3
,

2

3
= f -

2

3
, -

2

3
=

14

3
 and f (2, -2) = f (-2, 2) = 10. Therefore,  the 

absolute  maximum  of f  on C  is 10, which  occurs  at (2, -2) and (-2, 2), and the absolute  minimum  value of f  on 
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C  is
14

3
, which  occurs  at 

2

3
,

2

3
 and -

2

3
, -

2

3
. Notice  that the value of λ is not used in final  result.

Related  Exercises  9–10  ◆
Quick Check 2   Choose  any point  on the constraint  curve  in Figure  15.81b  other  than a solution  point.  

Draw ∇f  and ∇g  at that point  and show that they are not parallel.   ◆
Lagrange Multipliers with Three Independent Variables  »

The technique  just outlined  extends  to three or more independent  variables.  With three variables,  suppose  an 

objective  function  w = f (x, y , z) is given;  its level  surfaces  are surfaces  in ℝ3 (Figure  15.82a ). The constraint  

equation  takes  the form g (x, y , z) = 0, which  is another  surface  S in ℝ3 (Figure  15.82b ). To find the maximum  

and minimum  values  of f  on S (assuming  they exist),  we must  find the points  (a, b, c) on S at which  ∇f (a, b, c) 

is parallel  to ∇g (a, b, c), assuming  ∇g (a, b, c) ≠ 0 (Figure  15.82c,  d). In the case where  the surface  

g (x, y , z) = 0 is closed  and bounded,  the procedure  for finding  the absolute  maximum  and minimum  values  of 

f (x, y , z), where  the point  (x, y , z) is constrained  to lie on S, is similar  to the procedure  for two variables.

Figure 15.82

6 Chapter 15 •  Functions of Several Variables

Copyright © 2019 Pearson Education, Inc.



PROCEDURE Lagrange  Multipliers:  Absolute  Extrema  on Closed  and Bounded  Constraint  

Surfaces

Let f  and g  be differentiable  on a region  of ℝ3 with ∇g (x, y , z) ≠ 0 on the surface  g (x, y , z) = 0. To 

locate  the absolute  maximum  and minimum  values  of f  subject  to the constraint  g (x, y , z) = 0, 

carry out the following  steps.

1.  Find the values  of x, y , z, and λ that satisfy  the equations  

∇f (x, y , z) = λ ∇g (x, y , z) and g (x, y , z) = 0.

2.  Among  the points  (x, y , z) found  in Step 1, select  the largest  and smallest  corresponding  values  

of the objective  function.  These  values  are the absolute  maximum  and minimum  values  of f  

subject  to the constraint.

Note  »

If the  constraint  surface  S : g (x , y , z) = 0 has  a boundary  curve  C  (see  figure),  

then  each  point  on  C is a candidate  for  the  location  of an absolute  maximum  or 

minimum  value  of f , and  these  points  must  be analyzed  in Step  2 of the  

procedure.  We  avoid  this  case  in the  exercise  set.  

Now, there are four equations  to be solved  for x, y , z, and λ: 

fx(x, y , z) = λ gx(x, y , z), fy (x, y , z) = λ gy (x, y , z),

fz(x, y , z) = λ gz(x, y , z), and g (x, y , z) = 0.

As in the two-variable  case,  special  care must  be given to constraint  surfaces  that are not closed  and 

bounded.  We examine  one such case in Example  2.

EXAMPLE  2 A geometry  problem

Find the least  distance  between  the point  P(3, 4, 0) and the surface  of the cone z2 = x2 + y2.

Note  »

Problems  similar  to Example  2 were  solved  in Section  15.7  using  ordinary  

optimization  techniques.  These  methods  may  or may  not  be easier  to apply  

than  Lagrange  multipliers.

SOLUTION   »

The cone is not bounded,  so we begin  our calculations  recognizing  that solutions  are only candidates  for local  

extrema.  Figure  15.83  shows  both sheets  of the cone and the point  P(3, 4, 0). 
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Figure 15.83

Because  P  is in the xy-plane,  we anticipate  two solutions,  one for each sheet  of the cone.  The distance  between  

P  and any point  Q(x, y , z) on the cone is 

d(x, y , z) = (x - 3)2 + (y - 4)2 + z2 .

In many  distance  problems  it is easier  to work with the square of the distance  to avoid  dealing  with square  

roots.  This maneuver  is allowable  because  if a point  minimizes  (d(x, y , z))2, it also minimizes  d(x, y , z). There -

fore, we define  

f (x, y , z) = (d(x, y , z))2 = (x - 3)2 + (y - 4)2 + z2.

The constraint  is the condition  that the point  (x, y , z) must  lie on the cone,  which  implies  z2 = x2 + y2, or 

g (x, y , z) = z2 - x2 - y2 = 0.

Now we proceed  with Lagrange  multipliers;  the conditions  are 

fx(x, y , z) = λ gx(x, y , z), or 2 (x - 3) = λ(-2 x), or x(1 + λ) = 3,

fy (x, y , z) = λ gy (x, y , z), or 2 (y - 4) = λ(-2 y), or y(1 + λ) = 4,

fz(x, y , z) = λ gz(x, y , z), or 2 z = λ(2 z), or z = λ z, and

g (x, y , z) = z2 - x2 - y2 = 0.

(1)

(2)

(3)

(4)

The solutions  of equation  (3) (the simplest  of the four equations)  are either  z = 0, or λ = 1 and z ≠ 0. In the 

first case,  if z = 0, then by equation  (4), x = y = 0; however,  x = 0 and y = 0 do not satisfy  (1) and (2). So no 

solution  results  from this case.

On the other  hand,  if λ = 1 in equation  (3), then by (1) and (2), we find that x =
3

2
 and y = 2. Using  (4), the 

corresponding  values  of z  are ±
5

2
. Therefore,  the two solutions  and the values  of f  are 

8 Chapter 15 •  Functions of Several Variables

Copyright © 2019 Pearson Education, Inc.



x =
3

2
, y = 2, z =

5

2
with f

3

2
, 2,

5

2
=

25

2
, and

x =
3

2
, y = 2, z = -

5

2
with f

3

2
, 2, -

5

2
=

25

2
.

You can check  that moving  away from 
3

2
, 2, ±

5

2
 in any direction  on the cone has the effect  of increasing  the 

values  of f . Therefore,  the points  correspond  to local minima  of the distance  function.  Do these points  also 

correspond  to absolute minima?  The domain  of this problem  is unbounded;  however,  one can argue geometri -

cally that f  increases  without  bound  moving  away from 
3

2
, 2, ±

5

2
 with x →∞ and y  →∞. Therefore,  these  

points  correspond  to absolute  minimum  values  and the points  on the cone nearest  to (3, 4, 0) are 
3

2
, 2, ±

5

2
, at 

a distance  of 
25

2
=

5

2
. (Recall  that f = d2.)

Note  »

With  three  independent  variables,  it is possible  to impose  two  constraints.  

These  problems  are  explored  in Exercises  61–64.

Related  Exercises  32–34  ◆
Quick Check 3   In Example  2, is there a point  that maximizes the distance  between  (3, 4, 0) and the 

cone?  If the point  (3, 4, 0) were replaced  by (3, 4, 1), how many  minimizing  solutions  would  there be?  ◆
Answer  »

The distance  between  (3, 4, 0) and the cone can be arbitrarily  large,  so there is no 
maximizing  solution.  If the point  of interest  is not in the xy-plane,  there is one minimizing  
solution.

Economic  Models

In the opening  of this section,  we briefly  described  how utility  functions  are used to model  consumer  behavior.  

We now look in more detail  at some specific—  admittedly  simple—utility  functions  and the constraints  that are 

imposed  upon them.

As described  earlier,  a prototype  model  for consumer  behavior  uses two independent  variables:  leisure  

time ℓ and consumable  goods  g . A utility  function U = f (ℓ, g ) measures  consumer  preferences  for various  

combinations  of leisure  time and consumable  goods.  The following  assumptions  about  utility  functions  are 

commonly  made.

1. Utility  increases  if any variable  increases  (essentially,  more is better ).

2. Various  combinations  of leisure  time and consumable  goods  have the same utility;  that is, giving  up some 

leisure  time for additional  consumable  goods  (or vice versa)  results  in the same utility.

The level  curves  of a typical  utility  function  are shown  in Figure  15.84 . Assumption  1 is reflected  by the fact 

that the utility  values  on the level  curves  increase  as either  ℓ or g  increases.  Consistent  with Assumption  2, a 

single  level  curve  shows  the combinations  of ℓ and g  that have the same utility;  for this reason,  economists  call 

the level  curves  indifference  curves . Notice  that if ℓ increases,  then g  must  decrease  on a level  curve  to maintain  

the same utility,  and vice versa.
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Figure 15.84

Economic  models  assert  that consumers  maximize  utility  subject  to constraints  on leisure  time and 

consumable  goods.  One assumption  that leads to a reasonable  constraint  is that an increase  in leisure  time 

implies  a linear  decrease  in consumable  goods.  Therefore,  the constraint  curve  is a line with negative  slope 

(Figure  15.85 ). When  such a constraint  is superimposed  on the level  curves  of the utility  function,  the opti-

mization  problem  becomes  evident.  Among  all points  on the constraint  line, which  one maximizes  utility?  A 

solution  is marked  in the figure;  at this point  the utility  has a maximum  value (between  2.5 and 3.0).

Figure 15.85

EXAMPLE  3 Constrained  optimization  of utility

Find the absolute  maximum  value of the utility  function  U = f (ℓ, g ) = ℓ1/3 g 2/3, subject  to the constraint  

G(ℓ, g ) = 3 ℓ + 2 g - 12 = 0, where  ℓ ≥ 0 and g ≥ 0.

SOLUTION   »

The constraint  is closed  and bounded,  so we expect  to find an absolute  maximum  value of f . The level  curves  of 

the utility  function  and the linear  constraint  are shown  in Figure  15.85.  The solution  follows  the Lagrange  

multiplier  method  with two variables.  The gradient  of the utility  function  is 
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∇f (ℓ, g ) =  ℓ
-2/3 g 2/3

3
,

2 ℓ1/3 g-1/3

3
 =

1

3
 g

ℓ
2/3

, 2
ℓ
g

1/3

.

The gradient  of the constraint  function  is ∇G(ℓ, g ) = 〈3, 2〉. Therefore,  the equations  that must  be solved  are 

1

3

g

ℓ
2/3

= 3 λ,
2

3

ℓ
g

1/3

= 2 λ, and G(ℓ, g ) = 3 ℓ + 2 g - 12 = 0.

Eliminating  λ from the first two equations  leads to the condition  g = 3 ℓ, which,  when substituted  into the 

constraint  equation,  gives the solution  ℓ = 4

3
 and g = 4. This point  is a candidate  for the location  of the absolute  

maximum;  the other  candidates  are the endpoints  of the constraint  curve,  (4, 0) and (0, 6). The actual  value of 

the utility  function  at these point  are U = f
4

3
, 4 =

4

3
3

≈ 2.8 and f (4, 0) = f (0, 6) = 0. We conclude  that the 

maximum  value of f  is 2.8; this solution  occurs  at ℓ = 4

3
 and g = 4, and it is consistent  with Figure  15.85.  

Related  Exercise  38  ◆
Quick Check 4   In Figure  15.85,  explain  why,  if you move away from the optimal  point  along the 

constraint  line, the utility  decreases.   ◆
Answer  »

If you move along the constraint  line away from the optimal  solution  in either  direction,  you 
cross level  curves  of the utility  function  with decreasing  values.  

Exercises  »

Getting  Started   »

Practice  Exercises   »

7–26.  Lagrange  multipliers   Each function  f  has an absolute  maximum  value  and absolute  minimum  

value subject  to the given constraint.  Use Lagrange  multipliers  to find these  values.

7. f (x, y) = x + 2 y  subject  to x2 + y2 = 4

8. f (x, y) = x y2 subject  to x2 + y2 = 1

9. f (x, y) = x + y  subject  to x2 - x y + y2 = 1

10. f (x, y) = x2 + y2 subject  to 2x2 + 3 x y + 2 y2 = 7

11. f (x, y) = x y  subject  to x2 + y2 - x y = 9

12. f (x, y) = x - y  subject  to x2 + y2 - 3 x y = 20

13. f (x, y) = e x y subject to x2 + x y + y2 = 9

14. f (x, y) = x2 y  subject  to x2 + y2 = 9
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15. f (x, y) = 2 x2 + y2 subject  to x2 + 2 y + y2 = 15

16. f (x, y) = x2 subject  to x2 + x y + y2 = 3

17. f (x, y , z) = x + 3 y - z  subject  to x2 + y2 + z2 = 4

18. f (x, y , z) = x y z  subject  to x2 + 2 y2 + 4 z2 = 9

19. f (x, y , z) = x  subject  to x2 + y2 + z2 - z = 1

20. f (x, y , z) = x - z  subject  to x2 + y2 + z2 - y = 2

21. f (x, y , z) = x + y + z  subject  to x2 + y2 + z2 - x y = 5

22. f (x, y , z) = x + y + z  subject  to x2 + y2 + z2 - 2 x - 2 y = 1

23. f (x, y , z) = 2 x + z2 subject  to x2 + y2 + 2 z2 = 25

24. f (x, y , z) = x y - z subject to x2 + y2 + z2 - x y = 1

25. f (x, y , z) = x2 + y + z subject to 2 x2 + 2 y2 + z2 = 2

26. f (x, y , z) = (x y z)1/2 subject  to x + y + z = 1 with x ≥ 0, y ≥ 0, z ≥ 0

27–36.  Applications  of Lagrange  multipliers   Use Lagrange  multipliers  in the following  problems.  When  

the constraint  curve  is unbounded,  explain  why you have found  an absolute  maximum  or minimum  value.

27. Shipping  regulations   A shipping  company  requires  that the sum of length  plus girth of rectangular  

boxes  must  not exceed  108 in. Find the dimensions  of the box with maximum  volume  that meets  

this condition.  (The girth is the perimeter  of the smallest  side of the box.)

28. Box with minimum  surface  area   Find the dimensions  of the rectangular  box with a volume  of 

16 ft3 that has minimum  surface  area.

T 29. Extreme  distances  to an ellipse   Find the minimum  and maximum  distances  between  the ellipse  

x2 + x y + 2 y2 = 1 and the origin.

30. Maximum  area rectangle  in an ellipse   Find the dimensions  of the rectangle  of maximum  area with 

sides parallel  to the coordinate  axes that can be inscribed  in the ellipse  4 x2 + 16 y2 = 16.

31. Maximum  perimeter  rectangle  in an ellipse   Find the dimensions  of the rectangle  of maximum  

perimeter  with sides parallel  to the coordinate  axes that can be inscribed  in the ellipse  2 x2 + 4 y2 = 3.

32. Minimum  distance  to a plane   Find the point  on the plane  2 x + 3 y + 6 z - 10 = 0 closest  to the 

point  (-2, 5, 1).

33. Minimum  distance  to a surface   Find the point  on the surface  4 x + y - 1 = 0 closest  to the point  

(1, 2, -3).

34. Minimum  distance  to a cone   Find the points  on the cone z2 = x2 + y2 closest  to the point  (1, 2, 0).
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35. Extreme  distances  to a sphere   Find the minimum  and maximum  distances  between  the sphere  

x2 + y2 + z2 = 9 and the point  (2, 3, 4).

36. Maximum  volume  cylinder  in a sphere   Find the dimensions  of the right circular  cylinder  of 

maximum  volume  that can be inscribed  in a sphere  of radius  16.

37–40.  Maximizing  utility  functions   Find the values  of ℓ and g  with ℓ ≥ 0 and g ≥ 0 that maximize  the 

following  utility  functions  subject  to the given constraints.  Give the value  of the utility  function  at the 

optimal  point.

37. U = f (ℓ, g ) = 10 ℓ1/2 g 1/2 subject  to 3 ℓ + 6 g = 18

38. U = f (ℓ, g ) = 32 ℓ2/3 g 1/3 subject  to 4 ℓ + 2 g = 12

39. U = f (ℓ, g ) = 8 ℓ4/5 g 1/5 subject  to 10 ℓ + 8 g = 40

40. U = f (ℓ, g ) = ℓ1/6 g 5/6 subject  to 4 ℓ + 5 g = 20

41. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. Suppose  you are standing  at the center  of a sphere  looking  at a point  P  on the surface  of the 

sphere.  Your line of sight  to P  is orthogonal  to the plane  tangent  to the sphere  at P .

b. At a point  that maximizes  f  on the curve  g (x, y) = 0, the dot product  ∇f ·∇g  is zero.

42–47.  Alternative  method   Solve the following  problems  from Section  15.7 using  Lagrange  multipliers.

42. Exercise  43

43. Exercise  44

44. Exercise  45

45. Exercise  46

46. Exercise  70

47. Exercise  63

48–51.  Absolute  maximum  and minimum  values   Find the absolute  maximum  and minimum  values  of 

the following  functions  over the given regions  R. Use Lagrange  multipliers  to check  for extreme  points  on 

the boundary.

48. f (x, y) = x2 + 4 y2 + 1; R = (x, y) : x2 + 4 y2 ≤ 1
49. f (x, y) = x2 + y2 - 2 y + 1; R = (x, y) : x2 + y2 ≤ 4 (This  is Exercise  47, Section  15.7.)

50. f (x, y) = 2 x2 + y2; R = (x, y) : x2 + y2 ≤ 16 (This  is Exercise  48, Section  15.7.)

51. f (x, y) = 2 x2 - 4 x + 3 y2 + 2; R = (x, y) : (x - 1)2 + y2 ≤ 1 (This  is Exercise  51, Section  15.7.)

52. Extreme  points  on flattened  spheres   The equation  x2 n + y2 n + z2 n = 1, where  n is a positive  

integer,  describes  a flattened  sphere.  Define  the extreme  points  to be the points  on the flattened  

sphere  with a maximum  distance  from the origin.
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a. Find all the extreme  points  on the flattened  sphere  with n = 2. What  is the distance  between  the 

extreme  points  and the origin?

b. Find all the extreme  points  on the flattened  sphere  for integers  n > 2. What  is the distance  

between  the extreme  points  and the origin?

c. Give the location  of the extreme  points  in the limit  as n →∞. What  is the limiting  distance  

between  the extreme  points  and the origin  as n →∞?

53–55.  Production  functions   Economists  model  the output  of manufacturing  systems  using  production  

functions  that have many  of the same properties  as utility  functions.  The family  of Cobb-Douglas  

production  functions  has the form P = f (K , L) = C K a L1-a, where  K  represents  capital,  L represents  labor,  

and C  and a are positive  real numbers  with 0 < a < 1. If the cost of capital  is p dollars  per unit,  the cost of 

labor is q dollars  per unit,  and the total  available  budget  is B, then the constraint  takes  the form 

p K + q L = B. Find the values  of K  and L that maximize  the following  production  functions  subject  to the 

given constraint,  assuming  K ≥ 0 and L ≥ 0.

53. P = f (K , L) = K 1/2 L1/2 for 20 K + 30 L = 300

54. P = f (K , L) = 10 K 1/3 L2/3 for 30 K + 60 L = 360

55. Given the production  function  P = f (K , L) = K a L1-a  and the budget  constraint  p K + q L = B, 

where  a, p, q, and B are given,  show that P  is maximized  when K =
a B

p
 and L =

(1 - a) B

q
.

56. Temperature  of an elliptical  plate   The temperature  of points  on an elliptical  plate x2 + y2 + x y ≤ 1 

is given by T (x, y) = 25 x2 + y2. Find the hottest  and coldest  temperatures  on the edge of the plate.

Explorations  and Challenges   »

57–59.  Maximizing  a sum

57. Find the maximum  value of x1 + x2 + x3 + x4 subject  to the condition  that x1
2 + x2

2 + x3
2 + x4

2 = 16.

58. Generalize  Exercise  57 and find the maximum  value of x1 + x2 +⋯ + xn  subject  to the condition  

that x1
2 + x2

2 +⋯ + xn
2 = c2 for a real number  c  and a positive  integer  n.

59. Generalize  Exercise  57 and find the maximum  value of a1 x1 + a2 x2 +⋯ + an xn  subject  to the 

condition  that x1
2 + x2

2 +⋯ + xn
2 = 1, for given positive  real numbers  a1, …, an  and a positive  

integer  n.

60. Geometric  and arithmetic  means   Given  positive  numbers  x1, …, xn , prove  that the geometric  

mean (x1 x2 ⋯ xn)
1/n  is no greater  than the arithmetic  mean 

x1 +⋯ + xn

n
 in the following  cases.

a. Find the maximum  value of x y z, subject  to x + y + z = k , where  k  is a positive  real number  and 

x > 0, y > 0, and z > 0. Use the result  to prove  that 

(x y z)1/3 ≤ x + y + z

3
.

b. Generalize  part (a) and show that 

(x1 x2 ⋯ xn)
1/n ≤ x1 +⋯ + xn

n
.
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61. Problems  with two constraints   Given  a differentiable  function  w = f (x, y , z), the goal is to find its 

absolute  maximum  and minimum  values  (assuming  they exist)  subject  to the constraints  

g (x, y , z) = 0 and h(x, y , z) = 0, where  g  and h are also differentiable.

a. Imagine  a level  surface  of the function  f  and the constraint  surfaces  g (x, y , z) = 0 and 

h(x, y , z) = 0. Note that g  and h intersect  (in general)  in a curve  C  on which  maximum  and 

minimum  values  of f  must  be found.  Explain  why ∇g  and ∇h are orthogonal  to their  respective  

surfaces.

b. Explain  why ∇f  lies in the plane formed  by ∇g  and ∇h at a point  of C  where  f  has a maximum  

or minimum  value.

c. Explain  why part (b) implies  that ∇f = λ ∇g + μ ∇h at a point  of C  where  f  has a maximum  or 

minimum  value,  where  λ and μ (the Lagrange  multipliers)  are real numbers.

d. Conclude  from part (c) that the equations  that must  be solved  for maximum  or minimum  values  

of f  subject  to two constraints  are ∇f = λ ∇g + μ ∇h, g (x, y , z) = 0, and h(x, y , z) = 0.

62–64.  Two-constraint  problems   Use the result  of Exercise  61 to solve the following  problems.

62. The planes  x + 2 z = 12 and x + y = 6 intersect  in a line L. Find the point  on L nearest  the origin.

63. Find the maximum  and minimum  values  of f (x, y , z) = x y z  subject  to the conditions  that 

x2 + y2 = 4 and x + y + z = 1.

64. Find the maximum  and minimum  values  of f (x, y , z) = x2 + y2 + z2 on the curve  on which  the cone 

z2 = 4 x2 + 4 y2 and the plane 2 x + 4 z = 5 intersect.

65. Check  assumptions   Consider  the function f (x, y) = x y + x + y + 100 subject  to the constraint  x y = 4.

a. Use the method  of Lagrange  multipliers  to write  a system  of three equations  with three variables  

x, y , and λ.

b. Solve the system  in part (a) to verify  that (x, y) = (-2, -2) and (x, y) = (2, 2) are solutions.

c. Let the curve  C1 be the branch  of the constraint  curve  corresponding  to x > 0. Calculate  f (2, 2) 

and determine  whether  this value is an absolute  maximum  or minimum  value of f  over C1. 

(Hint: Let h1(x), for x > 0, equal  the values  of f  over the curve  C1 and determine  whether  h1 

attains  an absolute  maximum  or minimum  value at x = 2.)

d. Let the curve  C2 be the branch  of the constraint  curve  corresponding  to x < 0. Calculate  

f (-2, -2) and determine  whether  this value is an absolute  maximum  or minimum  value of f  

over C2. (Hint: Let h2(x), for x < 0, equal  the values  of f  over the curve  C2 and determine  whether  

h2 attains  an absolute  maximum  or minimum  value at x = -2.)

e. Show that the method  of Lagrange  multipliers  fails to find the absolute  maximum  and 

minimum  values  of f  over the constraint  curve  x y = 4. Reconcile  your explanation  with the

method  of Lagrange  multipliers.
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