
15.7 Maximum/Minimum Problems

In Chapter  4 we showed  how to use derivatives  to find maximum  and minimum  values  of functions  of a single  

variable.  When  those  techniques  are extended  to functions  of two variables,  we discover  both similarities  and 

differences.  The landscape  of a surface  is far more complicated  than the profile  of a curve  in the plane,  so we 

see more interesting  features  when working  with several  variables.  In addition  to peaks  (maximum  values)  and 

hollows  (minimum  values),  we encounter  winding  ridges,  long valleys,  and mountain  passes.  Yet despite  these

complications,  many  of the ideas  used for single-variable  functions  reappear  in higher  dimensions.  For exam-

ple, the Second  Derivative  Test,  suitably  adapted  for two variables,  plays  a central  role.  As with single-variable  

functions,  the techniques  developed  here are useful  for solving  practical  optimization  problems.

Local Maximum/Minimum Values  »

The concepts  of local  maximum  and minimum  values  encountered  in Chapter  4 extend  readily  to functions  of 

two variables  of the form z = f (x, y). Figure  15.67  shows  a general  surface  defined  on a domain  D, which  is a 

subset  of ℝ2. The surface  has peaks  (local  high points)  and hollows  (local  low points)  at points  in the interior  of 

D. The goal is to locate  and classify  these extreme  points.

show grids

show labels

Figure 15.67
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DEFINITION Local  Maximum/Minimum  Values

Suppose  (a, b) is a point  in a region  R on which  f  is defined.  If f (x, y) ≤ f (a, b) for all (x, y) in the 

domain  of f  and in some open disk centered  at (a, b), then f (a, b) is a local  maximum  value  of f . 

If f (x, y) ≥ f (a, b) for all (x, y) in the domain  of f and in some open disk centered  at (a, b), then 

f (a, b) is a local  minimum  value  of f . Local  maximum  or local  minimum  values  are also called  

local extreme  values  or local  extrema .

Note  »

We  maintain  the  convention  adopted  in Chapter  4 that  local  maxima  or 

minima  occur  at interior  points  of the  domain.  Recall  that  an open  disk  

centered  at (a , b) is the  set  of points  within  a circle  centered  at (a , b).

In familiar  terms,  a local  maximum  is a point  on a surface  from which  you cannot  walk uphill.  A local  

minimum  is a point  from which  you cannot  walk downhill.  The following  theorem  is the analog  of Theorem  4.2.

THEOREM  15.14 Derivatives  and Local  Maximum/Minimum  Values

If f  has a local  maximum  or minimum  value at (a, b) and the partial  derivatives  fx  and fy  exist  at 

(a, b), then fx(a, b) = fy (a, b) = 0.

Proof:  Suppose  f  has a local  maximum  value at (a, b). The function  of one variable  g (x) = f (x, b), obtained  by 

holding  y = b fixed,  also has a local  maximum  at (a, b). By Theorem  4.2, g ' (a) = 0. However,  g ' (a) = fx(a, b); 

therefore,  fx(a, b) = 0. Similarly,  the function  h(y) = f (a, y), obtained  by holding  x = a fixed,  has a local  maxi-

mum at (a, b), which  implies  that fy (a, b) = h ' (b) = 0. An analogous  argument  is used for the local  minimum  

case.  ◆

Suppose  f  is differentiable  at (a, b) (ensuring  the existence  of a tangent  plane)  and f  has a local  

extremum  at (a, b). Then,  fx(a, b) = fy (a, b) = 0, which,  when substituted  into the equation  of the tangent  

plane,  gives the equation  z = f (a, b) (a constant).  Therefore,  if the tangent  plane exists  at a local  extremum,  

then it is horizontal  there.

Quick Check 1   The paraboloid  z = x2 + y2 - 4 x + 2 y + 5 has a local  minimum  at (2, -1). Verify  the 

conclusion  of Theorem  15.14 for this function.   ◆
Answer  »

fx(2, -1) = fy (2, -1) = 0.

Recall  that for a function  of one variable  the condition  f ' (a) = 0 does not guarantee  a local  extremum  at 

a. A similar  precaution  must  be taken with Theorem  15.14.  The conditions  fx(a, b) = fy (a, b) = 0 do not imply  

that f  has a local  extremum  at (a, b), as we show momentarily.  Theorem  15.14 provides  candidates for local  

extrema.  We call these  candidates  critical  points , as we did for functions  of one variable.  Therefore,  the proce -

dure for locating  local  maximum  and minimum  values  is to find the critical  points  and then determine  whether  

these candidates  correspond  to genuine  local  maximum  and minimum  values.
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DEFINITION Critical  Point

An interior  point  (a, b) in the domain  of f  is a critical  point  of f  if either  

1. fx(a, b) = fy (a, b) = 0, or

2. at least  one of the partial  derivatives fx  or fy  does not exist  at (a, b).

EXAMPLE  1 Finding  critical  points

Find the critical  points  of f (x, y) = x y (x - 2) (y + 3).

SOLUTION   »

This function  is differentiable  at all points  of ℝ2, so the critical  points  occur  only at points  where  

fx(x, y) = fy (x, y) = 0. Computing  and simplifying  the partial  derivatives,  these conditions  become  

fx(x, y) = 2 y (x - 1) (y + 3) = 0

fy (x, y) = x (x - 2) (2 y + 3) = 0.

We must  now identify  all (x, y) pairs  that satisfy  both equations.  The first equation  is satisfied  if and only if 

y = 0, x = 1, or y = -3. We consider  each of these cases.

 Substituting  y = 0, the second  equation  is 3 x (x - 2) = 0, which  has solutions  x = 0 and x = 2. So, (0, 0) and 

(2, 0) are critical  points.

We find that there are five critical  points:  (0, 0), (2, 0), 1, -
3

2
, (0, -3), and (2, -3). Some  of these critical  points  

may correspond  to local  maximum  or minimum  values.  We return  to this example  and a complete  analysis  

shortly.

Related  Exercises  15, 18  ◆

Second Derivative Test  »

Critical  points  are candidates  for local  extreme  values.  With functions  of one variable,  the Second  Derivative  

Test may be used to determine  whether  critical  points  correspond  to local  maxima  or minima  (the test can also 

be inconclusive).  The analogous  test for functions  of two variables  not only detects  local  maxima  and minima,  

but also identifies  another  type of point  known  as a saddle  point .

DEFINITION Saddle  Point

Consider  a function  f  that is differentiable  at a critical  point  (a, b). Then f  has a saddle  point  at 

(a, b) if, in every open disk centered  at (a, b), there are points  (x, y) for which  f (x, y) > f (a, b) and 

points  for which  f (x, y) < f (a, b).

Note  »

The  usual  image  of a saddle  point  is that  of a mountain  pass  (or  a horse  

saddle),  where  you  can  walk  upward  in some  directions  and  downward  in 

other  directions.  The  definition  of a saddle  point  we  have  given  includes  other  

less  common  situations.  For  example,  with  this  definition,  the  cylinder  z = x3 

has  a line  of saddle  points  along  the  y -axis.

If (a, b) is a critical  point  of f  and f  has a saddle  point  at (a, b), then from the point  (a, b, f (a, b)), it is 

possible  to walk uphill  in some directions  and downhill  in other  directions.  The function  f (x, y) = x2 - y2 (a 
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hyperbolic  paraboloid)  is a good example  to remember.  The surface  rises from (0, 0) along the x-axis and falls 

from (0, 0) along the y-axis (Figure  15.68 ). We can easily  check  that fx(0, 0) = fy (0, 0) = 0, demonstrating  that 

critical  points  do not necessarily  correspond  to local  maxima  or minima.

x = 0

y = 0

show grids

Figure 15.68

Quick Check 2   Consider  the plane  tangent  to a surface  at a saddle  point.  In what direction  does the 

normal  to the plane  point?   ◆
Answer  »

Vertically,  in the directions  〈0, 0, ±1〉
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THEOREM  15.15 Second  Derivative  Test

Suppose  the second  partial  derivatives  of f  are continuous  throughout  an open disk centered  at 

the point  (a, b), where  fx(a, b) = fy (a, b) = 0. Let D(x, y) = fx x (x, y) fy y (x, y) - fx y (x, y)2.

1.  If D(a, b) > 0 and fx x (a, b) < 0, then f  has a local  maximum  value at (a, b).

2.  If D(a, b) > 0 and fx x (a, b) > 0, then f  has a local  minimum  value at (a, b).

3.  If D(a, b) < 0, then f  has a saddle  point  at (a, b).

4.  If D(a, b) = 0, then the test is inconclusive.

Note  »

The  Second  Derivative  Test  for  functions  of a single  variable  states  that  if a  is a

critical  point  with  f ' (a) = 0, then  f '' (a) > 0 implies  that  f  has  a local  

minimum  at a , f '' (a) < 0 implies  that  f  has  a local  maximum  at a , and  if 

f '' (a) = 0, the  test  is inconclusive.  Theorem  15.15  is easier  to remember  if you  

notice  the  parallels  between  the  two  second  derivative  tests.

The proof  of this theorem  is given in Appendix  A, but a few comments  are in order.  The test relies  on the 

quantity  D(x, y) = fx x fy y - fx y 2, which  is called  the discriminant of f . It can be remembered  as the 2×2 

determinant  of the Hessian matrix  
fx x fx y

fy x fy y
, where  fx y = fy x , provided  these derivatives  are continuous  

(Theorem  15.4).  The condition  D(x, y) > 0 means  that the surface  has the same general  behavior  in all direc-

tions near (a, b); either  the surface  rises in all directions,  or it falls in all directions.  In the case that D(a, b) = 0, 

the test is inconclusive:  (a, b) could  correspond  to a local  maximum,  a local  minimum,  or a saddle  point.

Finally,  another  useful  characterization  of a saddle  point  can be derived  from Theorem  15.15:  The tangent  

plane at a saddle  point  lies both above  and below  the surface.

Quick Check 3   Compute  the discriminant  D(x, y) of f (x, y) = x2 y2.  ◆
Answer  »

D(x, y) = -12 x2 y2

EXAMPLE  2 Analyzing  critical  points

Use the Second  Derivative  Test to classify  the critical  points  of f (x, y) = x2 + 2 y2 - 4 x + 4 y + 6.

SOLUTION   »

We begin  with the following  derivative  calculations:

fx = 2 x - 4, fy = 4 y + 4,

fx x = 2, fx y = fy x = 0, and fy y = 4.

Setting  both fx  and fy  equal  to zero yields  the single  critical  point  (2, -1). The value of the discriminant  at the 

critical  point  is D(2, -1) = fx x fy y - fx y 2 = 8 > 0. Furthermore,  fx x (2, -1) = 2 > 0. By the Second  Derivative  Test,  

f  has a local  minimum  at (2, -1); the value of the function  at that point  is f (2, -1) = 0 (Figure  15.69 ).
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x = 2

y = -1

show grids

Figure 15.69

Related  Exercise  24  ◆

EXAMPLE  3 Analyzing  critical  points

Use the Second  Derivative  Test to classify  the critical  points  of f (x, y) = x y (x - 2) (y + 3).

SOLUTION   »

In Example  1, we determined  that the critical  points  of f  are (0, 0), (2, 0), 1, -
3

2
, (0, -3), and (2, -3). The 

derivatives  needed  to evaluate  the discriminant  are 

fx = 2 y (x - 1) (y + 3), fy = x (x - 2) (2 y + 3),

fx x = 2 y (y + 3), fx y = 2 (2 y + 3) (x - 1), and fy y = 2 x (x - 2).

The values  of the discriminant  at the critical  points  and the conclusions  of the Second  Derivative  Test are 

shown  in Table  15.4.
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Table 15.4

(x , y) D(x , y) fx x Conclusion

(0, 0) -36 0 Saddle Point

(2, 0) -36 0 Saddle Point

1, -
3

2
9 -

9

2
Local maximum

(0, -3) -36 0 Saddle Point

(2, -3) -36 0 Saddle Point

The surface  described  by f  has one local  maximum  at 1, -
3

2
, surrounded  by four saddle  points  (Figure  

15.70). The structure  of the surface  may also be visualized  by plotting  the level  curves  of f .

show x trace

0 1 2

show y trace

-3 -32 0

show grids

One local maximum surrounded by

four saddle points .

1

-3

-2

-1

y

Saddle points at (0, -3), (

and (2, 0). Local maximum

(a) (b)

Figure 15.70

Related  Exercise  27  ◆

EXAMPLE  4 Inconclusive  tests

Apply  the Second  Derivative  Test to the following  functions  and interpret  the results.

a. f (x, y) = 2 x4 + y4
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b. f (x, y) = 2 - x y2

SOLUTION   »

a. The critical  points  of f  satisfy  the conditions  

fx = 8 x3 = 0 and fy = 4 y3 = 0,

so the sole critical  point  is (0, 0). The second  partial  derivatives  evaluated  at (0, 0) are 

fx x (0, 0) = fx y (0, 0) = fy y (0, 0) = 0.

We see that D(0, 0) = 0, and the Second  Derivative  Test is inconclusive.  While  the bowl-shaped  surface  (Figure  

15.71) described  by f  has a local  minimum  at (0, 0), the surface  also has a broad  flat bottom,  which  makes  the 

local minimum  “invisible”  to the Second  Derivative  Test.

Note  »

x = 0

y = 0

show grids

Figure 15.71

b. The critical  points  of this function  satisfy  

fx(x, y) = -y2 = 0 and fy (x, y) = -2 x y = 0.
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The solutions  of these equations  have the form (a, 0), where  a is a real number.  It is easy to check  that the 

second  partial  derivatives  evaluated  at (a, 0) are 

fx x (a, 0) = fx y (a, 0) = 0 and fy y (a, 0) = -2 a.

Therefore,  the discriminant  is D(a, 0) = 0, and the Second  Derivative  Test is inconclusive.  Figure  15.72  shows  

that f  has a flat ridge above  the x-axis that the Second  Derivative  Test is unable  to classify.

Note  »

x = 0

y = 0

show grids

Figure 15.72

Related  Exercises  29–30  ◆

Absolute Maximum and Minimum Values  »

As in the one-variable  case,  we are often interested  in knowing  where  a function  of two or more variables  attains  

its extreme  values  over its domain  (or a subset  of its domain).

DEFINITION Absolute  Maximum/Minimum  Values

Let f  be defined  on a set R in ℝ2 containing  the point  (a, b). If f (a, b) ≥ f (x, y) for every (x, y) in R, 

then f (a, b) is an absolute  maximum  value  of f  on R. If f (a, b) ≤ f (x, y) for every (x, y) in R, then 

f (a, b) is an absolute  minimum  value  of f  on R.

It should  be noted  that the Extreme  Value  Theorem  of Chapter  4 has an analog  in ℝ2 (or in higher  dimen -

sions):  A function  that is continuous  on a closed  bounded  set in ℝ2 attains  its absolute  maximum  and absolute  
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minimum  values  on that set. Absolute  maximum  and minimum  values  on a closed  bounded  set R occur  in two 

ways.

Note  »

 They may be local  maximum  or minimum  values  at interior  points  of R, where  they are associated  with 

critical  points.

 They may occur  on the boundary  of R.

Therefore,  the search  for absolute  maximum  and minimum  values  on a closed  bounded  set amounts  to examin -

ing the behavior  of the function  on the boundary  of R and at the interior  points  of R.

EXAMPLE  5 Shipping  regulations

A shipping  company  handles  rectangular  boxes  provided  the sum of the length,  width,  and height  of the box 

does not exceed  96 in. Find the dimensions  of the box that meets  this condition  and has the largest  volume.

Note  »

Example  5 is a constrained  optimization  problem , in which  the  goal  is to 

maximize  the  volume  subject  to an additional  condition  called  a constraint. We  

return  to such  problems  in the  next  section  and  present  another  method  of 

solution.

SOLUTION   »

Let x, y , and z  be the dimensions  of the box; its volume  is V = x y z. The box with the maximum  volume  must  

also satisfy  the condition x + y + z = 96, which  is used to eliminate  any one of the variables  from the volume  

function.  Noting  that z = 96 - x - y , the volume  function  becomes  

V (x, y) = x y (96 - x - y) .

Notice  that because  x, y , and 96 - x - y  are dimensions  of the box, they must  be nonnegative.  The condition  

96 - x - y ≥ 0 implies  that x + y ≤ 96. Therefore,  among  points  in the xy-plane,  the constraint  is met only if (x, y) 

lies in the triangle  bounded  by the lines x = 0, y = 0, and x + y = 96 (Figure  15.73 ).
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x = 32

y = 32

show grids

Figure 15.73

At this stage,  we have reduced  the original  problem  to a related  problem:  Find the absolute  maximum  

value of V (x, y) = x y (96 - x - y) over the triangular  region  

R = {(x, y) : 0 ≤ x ≤ 96, 0 ≤ y ≤ 96 - x}.

The boundaries  of R consist  of the line segments  x = 0, 0 ≤ y ≤ 96; y = 0, 0 ≤ x ≤ 96; and x + y = 96, 

0 ≤ x ≤ 96. We find that on these boundary  segments,  V = 0. To determine  the behavior  of V  at interior  points  of 

R, we need to find critical  points.  The critical  points  of V  satisfy  

Vx = 96 y - 2 x y - y2 = y (96 - 2 x - y) = 0

Vy = 96 x - 2 x y - x2 = x (96 - 2 y - x) = 0.

You can check  that these two equations  have four solutions:  (0, 0), (96, 0), (0, 96), and (32, 32). The first three 

solutions  lie on the boundary  of the domain,  where  V = 0. At the fourth  point,  we have V (32, 32) = 32,768 in3, 

which  is the absolute  maximum  volume  of the box. The dimensions  of the box with maximum  volume  are 

x = 32, y = 32, and z = 96 - x - y = 32 (it is a cube).  We also find that V  has an absolute  minimum  of 0 at every 

point  on the boundary  of R.

Related  Exercise  43  ◆

We summarize  the method  of solution  given in Example  5 in the following  procedure  box.
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PROCEDURE Finding  Absolute  Maximum/Minimum  Values  on Closed,  Bounded  Sets

Let f  be continuous  on a closed  bounded  set R in ℝ2. To find the absolute  maximum  and 

minimum  values  of f  on R:

1.  Determine  the values  of f  at all critical  points  in R.

2.  Find the maximum  and minimum  values  of f  on the boundary  of R.

3.  The greatest  function  value found  in Steps 1 and 2 is the absolute  maximum  value of f  on R, 

and the least  function  value found  in Steps  1 and 2 is the absolute  minimum  value of f  on R.

The techniques  for carrying  out Step 1 of this process  have been presented.  The challenge  often lies in 

locating  extreme  values  on the boundary.  Examples  6 and 7 illustrate  two approaches  to handling  the boundary  

of R. The first expresses  the boundary  using functions  of a single  variable,  and the second  describes  the bound -

ary parametrically.  In both cases,  finding  extreme  values  on the boundary  becomes  a one-variable  problem.  In 

the next section,  we discuss  an alternative  method  for finding  extreme  values  on boundaries.

EXAMPLE  6 Extreme  values  over a region

Find the absolute  maximum  and minimum  values  of f (x, y) = x y - 8 x - y2 + 12 y + 160 over the triangular  

region  R = {(x, y) : 0 ≤ x ≤ 15, 0 ≤ y ≤ 15 - x}.

SOLUTION   »

Figure  15.74  shows  the graph  of f  over the region  R. The goal is to determine  the absolute  maximum  and 

minimum  values  of f  over R—including  the boundary  of R. 
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show grids

Figure 15.74

We begin  by finding  the critical  points  of f  on the interior  of R. The partial  derivatives  of f  are 

fx(x, y) = y - 8 and fy (x, y) = x - 2 y + 12.

The conditions  fx(x, y) = fy (x, y) = 0 are satisfied  only when (x, y) = (4, 8), which  is a point  in the interior  of R. 

This critical  point  is a candidate  for the location  of an extreme  value of f , and the value of the function  at this 

point  is f (4, 8) = 192.

To search  for extrema  on the boundary  of R, we consider  each edge of R separately.  Let C1 be the line 

segment  {(x, y) : y = 0, for 0 ≤ x ≤ 15} on the x-axis and define  the single-variable  function  g1 to equal  f  at all 

points  along C1 (Figure  15.75 ). We substitute  y = 0 and find that g1 has the form 

g1(x) = f (x, 0) = 160 - 8 x.
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show values of f over

C1

C2

C3

show grids

Figure 15.75

Using what we learned  in Chapter  4, the candidates  for absolute  extreme  values  of g1 on 0 ≤ x ≤ 15 occur  at 

critical  points  and endpoints.  Specifically,  the critical  points  of g1 correspond  to values  where  its derivative  is 

zero, but in this case g1 ' (x) = -8. So there is no critical  point,  which  implies  that the extreme  values  of g1 occur  

at the endpoints  of the interval  [0, 15]. As the endpoints,  we find that 

g1(0) = f (0, 0) = 160 and g1(15) = f (15, 0) = 40.

Let’s set aside this information  while  we do a similar  analysis  on the other  two edges  of the boundary  of R.

Let C2 be the line segment  {(x, y) : x = 0, for 0 ≤ y ≤ 15} and define  g2 to equal  f  on C2 (Figure  15.75).  

Substituting  x = 0, we see that 

g2(y) = f (0, y) = -y2 + 12 y + 160.

The critical  points  of g2 satisfy  

g2 ' (y) = -2 y + 12 = 0,

which  has the single  root y = 6. Evaluating  g2 at this point  and the endpoints,  we have 

g2(6) = f (0, 6) = 196, g2(0) = f (0, 0) = 160, and g2(15) = f (0, 15) = 115.
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Observe  that g1(0) = g2(0) because  C1 and C2 intersect  at the origin.

Finally,  we let C3 be the line segment  {(x, y) : y = 15 - x, 0 ≤ x ≤ 15} and define  g3 to equal  f  on C3 (Figure  

15.75).  Substituting  y = 15 - x  and simplifying,  we find that 

g3(x) = f (x, 15 - x) = -2 x2 + 25 x + 115.

The critical  points  of g3 satisfy  

g3 ' (x) = -4 x + 25,

whose  only root on the interval  0 ≤ x ≤ 15 is x = 6.25. Evaluating  g3 at this critical  point  and the endpoints,  we 

have 

g3(6.25) = f (6.25, 8.75) = 193.125 , g3(15) = f (15, 0) = 40, and g3(0) = f (0, 15) = 115.

Observe  that g3(15) = g1(15) and g3(0) = g2(15); the only new candidate  for the location  of an extreme  value is 

the point  (6.25, 8.75).

Collecting  and summarizing  our work,  we have 6 candidates  for absolute  extreme  values:  

f (4, 8) = 192, f (0, 0) = 160, f (15, 0) = 40, f (0, 6) = 196, f (0, 15) = 115, and f (6.25, 8.75) = 193.125 .

We see that f  has an absolute  minimum  value of 40 at (15, 0) and an absolute  maximum  value of 196 at (0, 6). 

These  findings  are illustrated  in Figure  15.76 .
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show grids

Figure 15.76

Related  Exercise  52  ◆

EXAMPLE  7 Absolute  maximum  and minimum  values

Find the absolute  maximum  and minimum  values  of f (x, y) =
1

2
x3 - x - y2 + 3 on the region  

R = (x, y) : x2 + y2 ≤ 1 (the closed  disk centered  at (0, 0) with radius  1).

SOLUTION   »

We begin  by locating  the critical  points  of f  on the interior  of R. The critical  points  satisfy  the equations  

fx(x, y) =
1

2
3 x2 - 1 = 0 and fy (x, y) = -y = 0,

which  have the solutions x = ±
1

3
 and y = 0. The values  of the function  at these points  are 

f
1

3
, 0 = 3 -

1

3 3
 and f -

1

3
, 0 = 3 +

1

3 3
.

Note  »
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We now determine  the maximum  and minimum  values  of f  on the boundary  of R, which  is a circle  of 

radius  1 described  by the parametric  equations  

x = cos θ, y = sin θ, for 0 ≤ θ ≤ 2 π.

Note  »

Substituting  x  and y  in terms  of θ into the function  f , we obtain  a new function  g (θ) that gives the values  of f  on 

the boundary  of R: 

g (θ) =
1

2
cos3 θ - cos θ - sin2 θ + 3.

Finding  the maximum  and minimum  boundary  values  is now a one-variable  problem.  The critical  points  of g  

satisfy

g ' (θ) =
1

2
-3 cos2 θ sin θ + sin θ - 2 sin θ cos θ

= -
1

2
sin θ 3 cos2 θ + 2 cos θ - 1

= -
1

2
sin θ (3 cos θ - 1) (cos θ + 1) = 0.

This condition  is satisfied  when sin θ = 0, cos θ =
1

3
, or cos θ = -1. The solutions  of these equations  on the 

interval  (0, 2 π) are θ = π, θ = cos-1
1

3
, and θ = 2 π - cos-1

1

3
, which  correspond  to the points  (-1, 0), 

1

3
,

2 2

3
, 

and 
1

3
, -

2 2

3
 in the x y-plane,  respectively.  Notice  that the endpoints  of the interval  (θ = 0 and θ = 2 π) 

correspond  to the same point  on the boundary  of R, namely  (1, 0).

Note  »

Having  completed  the first two steps of the procedure,  we have six function  values  to consider:  

 f
1

3
, 0 = 3 -

1

3 3
≈ 2.81 and f -

1

3
, 0 = 3 +

1

3 3
≈ 3.19 (critical  points),

The greatest  value of f  on R, f -
1

3
, 0 = 3 +

1

3 3
, is the absolute  maximum  value,  and it occurs  at an 

interior  point  (Figure  15.77 ). The least  value,  f
1

3
,

2 2

3
= f

1

3
, -

2 2

3
=

65

27
, is the absolute  minimum  

value,  and it occurs  at two symmetric  boundary  points.  Also revealing  is the plot of the level  curves  of the 

surface  with the boundary  of R superimposed.  As the boundary  of R is traversed,  the values  of f  vary,  reaching  a 

maximum  value of 3 at (1, 0) and (-1, 0), and a minimum  value of 
65

27
 at 

1

3
,

2 2

3
 and 

1

3
, -

2 2

3
.
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show region R

x, y  : x 2
+ y 2 ≤ 1

show z plane

z

z = f
1

3
, 0

z = f -
1

3
, 0

z = f -1, 0 

z = f
1

3
,

2 2

3

z = f
1

3
, -

2 2

3

z = f 1, 0 

show surface

show grids
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Figure 15.77

Note  »

Observe  that  the  level  curves  of f  in Figure  15.77b  appear  to be tangent  to the  

curve  x2 + y 2 = 1 (the  boundary  of the  region  R) at the  points  corresponding  to 

the  maximum  and  minimum  values  of f  on  this  boundary.  The  significance  of 

this  observation  is explained  in Section  15.8.

Related  Exercises  47–48  ◆

Open and/or  Unbounded  Regions

Finding  absolute  maximum  and minimum  values  of a function  on an open region  (for example,  

R = (x, y) : x2 + y2 < 9) or an unbounded  region  (for example,  R = {(x, y) : x > 0, y > 0}) presents  additional  

challenges.  Because  there is no systematic  procedure  for dealing  with such problems,  some ingenuity  is gener-

ally needed.  Notice  that absolute  extrema  may not exist  on such domains.

EXAMPLE  8 Absolute  extreme  values  on an open region

Find the absolute  maximum  and minimum  values  of f (x, y) = 4 - x2 - y2 on the open disk 

R = (x, y) : x2 + y2 < 1 (if they exist).

SOLUTION   »

You should  verify  that f  has a critical  point  at (0, 0) and it corresponds  to a local  maximum  (on an inverted  

paraboloid).  Moving  away from (0, 0) in all directions,  the function  values  decrease,  so f  also has an absolute  
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maximum  value of 4 at (0, 0). The boundary  of R is the unit circle  (x, y) : x2 + y2 = 1, which  is not contained  in 

R. As (x, y) approaches  any point  on the unit circle  along any path in R, the function  values  

f (x, y) = 4 - x2 + y2 decrease  and approach  3 but never  reach 3. Therefore,  f  does not have an absolute  

minimum  on R.

Related  Exercise  59  ◆

Quick Check 4   Does the linear  function  f (x, y) = 2 x + 3 y  have an absolute  maximum  or minimum  

value on the open unit square  {(x, y) : 0 < x < 1, 0 < y < 1}?  ◆
Answer  »

It has neither  an absolute  maximum  nor an absolute  minimum  value on this set.

EXAMPLE  9 Absolute  extreme  values  on an open region

Find the point(s)  on the plane  x + 2 y + z = 2 closest  to the point  P(2, 0, 4).

SOLUTION   »

Suppose  (x, y , z) is a point  on the plane,  which  means  that z = 2 - x - 2 y . The distance  between  P(2, 0, 4) and 

(x, y , z) that we seek to minimize  is 

d(x, y , z) = (x - 2)2 + y2 + (z - 4)2 .

It is easier  to minimize  d2, which  has the same critical  points  as d . Squaring  d  and eliminating  z  using  

z = 2 - x - 2 y , we have 

f (x, y) = (d(x, y , z))2 = (x - 2)2 + y2 + (-x - 2 y - 2

z-4

)2

= 2 x2 + 5 y2 + 4 x y + 8 y + 8.

Note  »

Notice  that  
∂

∂x
d 2 = 2 d

∂d

∂x
 and  

∂

∂ y
d 2 = 2 d

∂d

∂ y
. Because  d ≥ 0, d 2 and  d  

have  the  same  critical  points.

The critical  points  of f  satisfy  the equations  

fx = 4 x + 4 y = 0 and fy = 4 x + 10 y + 8 = 0,

whose  only solution  is x =
4

3
, y = -

4

3
. The Second  Derivative  Test confirms  that this point  corresponds  to a local  

minimum  of f . We now ask: Does 
4

3
, -

4

3
 correspond  to the absolute minimum  value of f  over the entire  

domain  of the problem,  which  is ℝ2? Because  the domain  has no boundary,  we cannot  check  values  of f  on the

boundary.  Instead,  we argue geometrically  that there is exactly  one point  on the plane that is closest  to P . We 

have found  a point  that is closest  to P  among  nearby  points  on the plane.  As we move away from this point,  the 

values  of f  increase  without  bound.  Therefore,  
4

3
, -

4

3
 corresponds  to the absolute  minimum  value of f . A 
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graph of f  (Figure  15.78 ) confirms  this reasoning,  and we conclude  that the point  
4

3
.-

4

3
,

10

3
 is the point  on 

the plane nearest  P .

x

x = 4  3

y

y = -4  3

show surfaces

show grids

Figure 15.78

Related  Exercises  62–63  ◆

Exercises  »

Getting  Started   »

Practice  Exercises   »

13–22.  Critical  points   Find all critical  points  of the following  functions.

13. f (x, y) = 3 x2 - 4 y2

14. f (x, y) = x2 - 6 x + y2 + 8 y

15. f (x, y) = 3 x2 + 3 y - y3

16. f (x, y) = x3 - 12 x + 6 y2

17. f (x, y) = x4 + y4 - 16 x y

18. f (x, y) =
x3

3
-

y3

3
+ 3 x y

19. f (x, y) = x4 - 2 x2 + y2 - 4 y + 5

20. f (x, y) = x3 + 6 x y - 6 x + y2 - 2 y
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21. f (x, y) = y3 + 6 x y + x2 - 18 y - 6 x

22. f (x, y) = e8 x2 y 2-24 x2-8 x y 4

23–40.  Analyzing  critical  points   Find the critical  points  of the following  functions.  Use the Second  

Derivative  Test to determine  (if possible)  whether  each critical  point  corresponds  to a local  maximum,  

local minimum,  or saddle  point.  If the Second  Derivative  Test is inconclusive,  determine  the behavior  of 

the function  at the critical  points.

23. f (x, y) = -4 x2 + 8 y2 - 3

24. f (x, y) = x4 + y4 - 4 x - 32 y + 10

25. f (x, y) = 4 + 2 x2 + 3 y2

26. f (x, y) = x y e-x-y

27. f (x, y) = x4 + 2 y2 - 4 x y

28. f (x, y) = (4 x - 1)2 + (2 y + 4)2 + 1

29. f (x, y) = 4 + x4 + 3 y4

30. f (x, y) = x4 y2

31. f (x, y) = x2 + y2 - 4 x + 5

32. f (x, y) = tan-1 x y

33. f (x, y) = 2 x y e-x2-y 2

34. f (x, y) = x2 + x y2 - 2 x + 1

35. f (x, y) =
x

1 + x2 + y2

36. f (x, y) =
x - 1

x2 + y2

37. f (x, y) = x4 + 4 x2(y - 2) + 8 (y - 1)2

38. f (x, y) = x e-x-y sin y , for x ≤ 2, 0 ≤ y ≤ π

39. f (x, y) = y ex - ey

40. f (x, y) = sin (2 π x) cos (π y), for x ≤
1

2
 and y  ≤

1

2

41–42.  Inconclusive  tests   Show that the Second  Derivative  Test is inconclusive  when applied  to the 

following  functions  at (0, 0). Describe  the behavior  of the function  at (0, 0).
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41. f (x, y) = x2 y - 3

42. f (x, y) = sin x2 y2

43. Shipping  regulations   A shipping  company  handles  rectangular  boxes  provided  the sum of the 

height  and the girth of the box does not exceed  96 in. (The girth is the perimeter  of the smallest  side 

of the box.)  Find the dimensions  of the box that meets  this condition  and has the largest  volume.

44. Cardboard  boxes  A lidless  box is to be made  using 2 m2 of cardboard.  Find the dimensions  of the 

box with the largest  possible  volume.

45. Cardboard  boxes   A lidless  cardboard  box is to be made  with a volume  of 4 m3. Find the dimensions  

of the box that requires  the least  amount  of cardboard.

46. Optimal  box   Find the dimensions  of the largest  rectangular  box in the first octant  of the xyz-

coordinate  system  that has one vertex  at the origin  and the opposite  vertex  on the plane  

x + 2 y + 3 z = 6.

47–52.  Absolute  maxima  and minima   Find the absolute  maximum  and minimum  values  of the 

following  functions  on the given region  R.

47. f (x, y) = x2 + y2 - 2 y + 1; R = (x, y) : x2 + y2 ≤ 4

48. f (x, y) = 2 x2 + y2; R = (x, y) : x2 + y2 ≤ 16

49. f (x, y) = 4 + 2 x2 + y2; R = {(x, y) : -1 ≤ x ≤ 1, -1 ≤ y ≤ 1}

50. f (x, y) = 6 - x2 - 4 y2; R = {(x, y) : -2 ≤ x ≤ 2, -1 ≤ y ≤ 1}

51. f (x, y) = 2 x2 - 4 x + 3 y2 + 2; R = (x, y) : (x - 1)2 + y2 ≤ 1

52. f (x, y) = x2 + y2 - 2 x - 2 y ; R is the closed  region  bounded  by the triangle  with vertices  (0, 0), (2, 0), 

and (0, 2).

53. f (x, y) = -2 x2 + 4 x - 3 y2 - 6 y - 1; R = (x, y) : (x - 1)2 + (y + 1)2 ≤ 1

54. f (x, y) = x2 + y2 - 2 x + 2 ; R = (x, y) : x2 + y2 ≤ 4, y ≥ 0

55. f (x, y) =
2 y2 - x2

2 + 2 x2 y2
; R is the closed  region  bounded  by the lines y = x, y = 2 x, and y = 2.

56. f (x, y) = x2 + y2 ; R is the closed  region  bounded  by the ellipse  
x2

4
+ y2 = 1.
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T 57. Pectin  Extraction   An increase  in world  production  of processed  fruit  has led to an increase  in fruit  

waste.  One way of reducing  this waste  is to find useful  waste  byproducts.  For example,  waste  from 

pineapples  is reduced  by extracting  pectin  from pineapple  peels  (pectin  is commonly  used as a 

thickening  agent  in jam and jellies  and it is also widely  used in the pharmaceutical  industry).  Pectin  

extraction  involves  heating  and drying  the peels,  then grinding  the peels  into a fine powder.  The 

powder  is then placed  in a solution  with a particular  pH level  H , for 1.5 ≤ H ≤ 2.5, and heated  to a 

temperature  T  (in degrees  Celsius),  for 70 ≤ T ≤ 90. The percentage  of the powder  F (H , T ) that 

becomes  extracted  pectin  is 

F (H , T ) = -0.042 T 2 - 0.213 T H - 11.219 H 2 + 7.327 T + 58.729 H - 342.684 .

a. It can be shown  that F  attains  its absolute  maximum  in the interior  of the domain  

D = {(H , T ) : 1.5 ≤ H ≤ 2.5, 70 ≤ T ≤ 90}. Find the pH level  H  and temperature  T  that maximizes  

the amount  of pectin  extracted  from the powder.  

b. What is the maximum  percentage  of pectin  that can be extracted  from the powder?  Round  your 

answer  to the nearest  whole  number.

(Source: Carpathian  Journal  of Food Science  and Technology , Dec 2014)

58–61.  Absolute  extrema  on open  and/or  unbounded  regions   If possible,  find the absolute  maximum  

and minimum  values  of the following  functions  on the region  R.

58. f (x, y) = x + 3 y ; R = {(x, y) : x < 1, y  < 2}

59. f (x, y) = x2 + y2 - 4; R = (x, y) : x2 + y2 < 4

60. f (x, y) = x2 - y2; R = {(x, y) : x < 1, y  < 1}

61. f (x, y) = 2 e-x-y ; R = {(x, y) : x ≥ 0, y ≥ 0}

62–66.  Absolute  extrema  on open  and/or  unbounded  regions

62. Find the point  on the plane  x + y + z = 4 nearest  the point  P(5, 4, 4).

63. Find the point  on the plane x - y + z = 2 nearest  the point  P(1, 1, 1).

64. Find the point  on the paraboloid  z = x2 + y2 nearest  the point  P(3, 3, 1).

65. Find the points  on the cone z2 = x2 + y2 nearest  the point  P(6, 8, 0).

66. Rectangular  boxes  with a volume  of 10 m3 are made  of two materials.  The material  for the top and 

bottom  of the box costs  $10 m2 and the material  for the sides of the box costs  $1 m2. What  are the 

dimensions  of the box that minimize  the cost of the box?

67. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.  Assume  f  is differentiable  at the points  in question.

a. The fact that fx(2, 2) = fy (2, 2) = 0 implies  that f  has a local  maximum,  local  minimum,  or 

saddle  point  at (2, 2).

b. The function  f  could  have a local  maximum  at (a, b) where  fy (a, b) ≠ 0.

c. The function  f  could  have both an absolute  maximum  and an absolute  minimum  at two 

different  points  that are not critical  points.

d. The tangent  plane  is horizontal  at a point  on a smooth  surface  corresponding  to a critical  point.
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68–69.  Extreme  points  from  contour  plots   Based  on the level  curves  that are visible  in the following  

graphs,  identify  the approximate  locations  of the local  maxima,  local  minima,  and saddle  points.

68.

69.

70. Optimal  box   Find the dimensions  of the rectangular  box with maximum  volume  in the first octant  

with one vertex  at the origin  and the opposite  vertex  on the ellipsoid  36 x2 + 4 y2 + 9 z2 = 36.

Explorations  and Challenges   »

71. Magic  triples   Let x, y , and z  be nonnegative  numbers  with x + y + z = 200.
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a. Find the values  of x, y , and z  that minimize  x2 + y2 + z2.

b. Find the values  of x, y , and z  that minimize  x2 + y2 + z2 .

c. Find the values  of x, y , and z  that maximize  x y z.

d. Find the values  of x, y , and z  that maximize  x2 y2 z2.

72. Maximum/minimum  of linear  functions   Let R be a closed  bounded  region  in ℝ2 and let 

f (x, y) = a x + b y + c, where  a, b, and c  are real numbers,  with a and b not both zero.  Give a 

geometric  argument  explaining  why the absolute  maximum  and minimum  values  of f  over R occur  

on the boundaries  of R.

T 73. Optimal  locations   Suppose  n houses  are located  at the distinct  points  (x1, y1), (x2, y2), …, (xn , yn). 

A power  substation  must  be located  at a point  such that the sum of the squares  of the distances  

between  the houses  and the substation  is minimized.

a. Find the optimal  location  of the substation  in the case that n = 3 and the houses  are located  at 

(0, 0), (2, 0), and (1, 1).

b. Find the optimal  location  of the substation  in the case that n = 3 and the houses  are located  at 

distinct  points  (x1, y1), (x2, y2), and (x3, y3).

c. Find the optimal  location  of the substation  in the general  case of n houses  located  at distinct  

points  (x1, y1), (x2, y2), …, (xn , yn).

d. You might  argue that the locations  found  in parts  (a), (b) and (c) are not optimal  because  they 

result  from minimizing  the sum of the squares of the distances,  not the sum of the distances  

themselves.  Use the locations  in part (a) and write  the function  that gives the sum of the 

distances.  Note that minimizing  this function  is much  more difficult  than in part (a). Then use a 

graphing  utility  to determine  whether  the optimal  location  is the same in the two cases.  (Also see 

Exercise  81 about  Steiner's  problem.)

74–75.  Least  squares  approximation   In its many  guises,  least  squares  approximation  arises  in numerous  

areas of mathematics  and statistics.  Suppose  you collect  data for two variables  (for example,  height  and 

shoe size) in the form of pairs  (x1, y1), (x2, y2), …, (xn , yn). The data may be plotted  as a scatterplot  in the 

xy-plane,  as shown  in the figure.  The technique  known  as linear  regression  asks the question:  What  is the 

equation  of the line that "best  fits" the data?  The least  squares  criterion  for best fit requires  that the sum of 

the squares  of the vertical  distances  between  the line and the data points  be a minimum.

74. Let the equation  of the best-fit  line be y = m x + b, where  the slope m and the y-intercept  b must  be 

determined  using the least  squares  condition.  First  assume  there are three data points  (1, 2), (3, 5), 

and (4, 6). Show that the function  of m and b that gives the sum of the squares  of the vertical  

distances  between  the line and the three data points  is 

E (m, b) = ((m + b) - 2)2 + ((3 m + b) - 5)2 + ((4 m + b) - 6)2.

Find the critical  points  of E  and find the values  of m and b that minimize  E . Graph  the three data 

points  and the best-fit  line.
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T 75. Generalize  the procedure  in Exercise  74 by assuming  n data points  (x1, y1), (x2, y2), …, (xn , yn) are 

given.  Write  the function  E (m, b) (summation  notation  allows  for a more compact  calculation).  

Show that the coefficients  of the best-fit  line are 

m =
(∑xk ) (∑yk ) - n ∑xk yk

(∑xk )
2 - n ∑xk

2
,

b =
1

n
yk - m xk ,

where  all sums run from k = 1 to k = n.

T 76–77.  Least  squares  practice   Use the results  of Exercise  75 to find the best-fit  line for the following  data 

sets. Plot the points  and the best-fit  line.

76. (0, 0), (2, 3), (4, 5)

77. (-1, 0), (0, 6), (3, 8)

78. Second  Derivative  Test   Suppose  the conditions  of the Second  Derivative  Test are satisfied  on an 

open disk containing  the point  (a, b). Use the test to prove  that if (a, b) is a critical  point  of f  at 

which  fx(a, b) = fy (a, b) = 0 and fx x (a, b) < 0 < fy y (a, b) or fy y (a, b) < 0 < fx x (a, b), then f  has a 

saddle  point  at (a, b).

79. Maximum  area triangle   Among  all triangles  with a perimeter  of 9 units,  find the dimensions  of the 

triangle  with the maximum  area.  It may be easiest  to use Heron's  formula,  which  states  that the area 

of a triangle  with side length  a, b, and c  is A = s (s - a) (s - b) (s - c) , where  2 s is the perimeter  of 

the triangle.

80. Slicing  plane   Find an equation  of the plane  passing  through  the point  (3, 2, 1) that slices  off the 

solid in the first octant  with the least  volume.

T 81. Steiner’s  problem  for three  points   Given  three distinct  noncollinear  points  A, B, and C  in the 

plane,  find the point  P  in the plane such that the sum of the distances  A P  + B P  + C P  is a 

minimum.  Here is how to proceed  with three points,  assuming  the triangle  formed  by the three 

points  has no angle  greater  than 
2 π
3

 (120°).

a. Assume  the coordinates  of the three given points  are A(x1, y1), B(x2, y2), and C (x3, y3). Let 

d1(x, y) be the distance  between  A(x1, y1) and a variable  point  P(x, y). Compute  the gradient  of 

d1 and show that it is a unit vector  pointing  along the line between  the two points.

b. Define  d2 and d3 in a similar  way and show that ∇d2 and ∇d3 are also unit vectors  in the 

direction  of the line between  the two points.

c. The goal is to minimize  f (x, y) = d1 + d2 + d3. Show that the condition  fx = fy = 0 implies  that 

∇d1 + ∇d2 + ∇d3 = 0.

d. Explain  why part (c) implies  that the optimal  point  P  has the property  that the three line 

segments  A P , B P , and C P  all intersect  symmetrically  in angles  of 
2 π
3

.

e. What is the optimal  solution  if one of the angles  in the triangle  is greater  than 
2 π
3

 (just draw a 

picture)?
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f. Estimate  the Steiner  point  for the three points  (0, 0), (0, 1), and (2, 0).

T 82. Solitary  critical  points   A function  of one variable  has the property  that a local  maximum  (or 

minimum)  occurring  at the only critical  point  is also the absolute  maximum  (or minimum)  (for 

example,  f (x) = x2). Does the same result  hold for a function  of two variables?  Show that the 

following  functions  have the property  that they have a single  local  maximum  (or minimum),  

occurring  at the only critical  point,  but that the local  maximum  (or minimum)  is not an absolute  

maximum  (or minimum)  on ℝ2.

a. f (x, y) = 3 x ey - x3 - e3 y

b. f (x, y) = 2 y2 - y4 ex +
1

1 + x2
-

1

1 + x2

This property  has the following  interpretation.  Suppose  a surface  has a single  local  minimum  that is 

not the absolute  minimum.  Then water  can be poured  into the basin  around  the local  minimum  

and the surface  never  overflows,  even though  there are points  on the surface  below  the local  

minimum.

(Source: Mathematics  Magazine , May 1985,  and Calculus  and Analytical  Geometry , 2nd ed., Philip  

Gillett,  1984)

T 83. Two mountains  without  a saddle   Show that the following  two functions  have two local  maxima  but 

no other  extreme  points  (therefore,  no saddle  or basin  between  the mountains).

a. f (x, y) = -x2 - 12 - x2 - ey 2

b. f (x, y) = 4 x2 ey - 2 x4 - e4 y

(Source: Ira Rosenholtz,  Mathematics  Magazine , Feb 1987)

84. Powers  and roots   Assume  x + y + z = 1 with x ≥ 0, y ≥ 0, and z ≥ 0.

a. Find the maximum  and minimum  values  of 1 + x2 1 + y2 1 + z2.
b. Find the maximum  and minimum  values  of 1 + x  1 + y  1 + z .

(Source:  Math Horizons , Apr 2004)

85. Ellipsoid  inside  a tetrahedron   (1946 Putnam  Exam)  Let P  be a plane tangent  to the ellipsoid  

x2

a2
+

y2

b2
+

z2

c2
= 1 at a point  in the first octant.  Let T  be the tetrahedron  in the first octant  bounded  

by P  and the coordinate  planes  x = 0, y = 0, and z = 0. Find the minimum  volume  of T . (The volume  

of a tetrahedron  is one-third  the area of the base times  the height.)
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