
15.5 Directional Derivatives and the Gradient

Partial  derivatives  tell us a lot about  the rate of change  of a function  on its domain.  However,  they do not 

directly answer  some important  questions.  For example,  suppose  you are standing  at a point  (a, b, f (a, b)) on 

the surface  z = f (x, y). The partial  derivatives  fx  and fy  tell you the rate of change  (or slope)  of the surface  at that 

point  in the directions  parallel  to the x-axis and y-axis,  respectively.  But you could  walk in an infinite  number  of 

directions  from that point  and find a different  rate of change  in every direction.  With this observation  in mind,  

we pose several  questions.

 Suppose  you are standing  on a surface  and you walk in a direction  other than a coordinate  direction—say,  

northwest  or south-southeast.  What  is the rate of change  of the function  in such a direction?

 Suppose  you are standing  on a surface  and you release  a ball at your feet and let it roll.  In which  direction  

will it roll?

 If you are hiking  up a mountain,  in what  direction  should  you walk after each step if you want to follow  the 

steepest  path?

These  questions  will be answered  in this section  as we introduce  the directional  derivative , followed  by one of 

the central  concepts  of calculus—the  gradient.

Directional Derivatives  »

Let (a, b, f (a, b)) be a point  on the surface  z = f (x, y) and let u be a unit vector  in the xy-plane  (Figure  15.45 ). 

Our aim is to find the rate of change  of f  in the direction  u at P0(a, b). In general,  this rate of change  is neither  

fx(a, b) nor fy (a, b) (unless  u = 〈1, 0〉 or u = 〈0, 1〉), but it turns  out to be a combination  of fx(a, b) and fy (a, b).
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Figure 15.45

Figure  15.46a  shows  the unit vector  u = 〈u1, u2〉; its x- and y-components  are u1 and u2, respectively.  
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The derivative  we seek must  be computed  along the line ℓ in the xy-plane  through  P0 in the direction  of u. A 

neighboring  point  P , which  is h units  from P0 along ℓ, has coordinates  P(a + h u1, b + h u2) (Figure  15.46b ).

Figure 15.46

Now imagine  the plane  Q  perpendicular  to the xy-plane,  containing  ℓ. This plane  cuts the surface  

z = f (x, y) in a curve  C . Consider  two points  on C  corresponding  to P0 and P ; they have z-coordinates  f (a, b) 

and f (a + h u1, b + h u2) (Figure  15.47 ). The slope of the secant  line between  these points  is 

f (a + h u1, b + h u2) - f (a, b)

h
.

The derivative  of f  in the direction  of u is obtained  by letting  h → 0; when the limit  exists,  it is called  the direc-

tional  derivative  of f  at (a, b) in the direction  of u. It gives the slope of the line tangent  to the curve  C  in the 

plane Q.
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Figure 15.47

DEFINITION Directional  Derivative

Let f  be differentiable  at (a, b) and let u = 〈u1, u2〉 be a unit vector  in the xy-plane.  The directional  

derivative  of f  at (a, b) in the direction  of u is 

Du f (a, b) = lim
h→0

f (a + h u1, b + h u2) - f (a, b)

h
,

provided  the limit  exists.

Note  »

As motivation,  it is instructive  to see how the directional  derivative  includes  the ordinary  derivative  in one 

variable.  Setting  u2 = 0 in the definition  of the directional  derivative  and ignoring  the second  variable  gives the 

rate of change  of f  in the x-direction.  The directional  derivative  becomes  

lim
h→0

f (a + h u1) - f (a)

h
.
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Multiplying  the numerator  and denominator  of this quotient  by u1, we have 

u1 lim
h→0

f (a + h u1) - f (a)

h

f ' (a)

= u1 f ' (a).

Only because  u is a unit vector  and u1 = 1 does the directional  derivative  reduce  to the ordinary  derivative  f ' (a) 

in the x-direction.  A similar  argument  may be used in the y-direction.  Choosing  u to be a unit vector  gives the 

simplest  formulas  for the directional  derivative.

Quick Check 1   Explain  why,  when u = 〈1, 0〉 in the definition  of the directional  derivative,  the result  is 

fx(a, b) and when u = 〈0, 1〉, the result  is fy (a, b).  ◆
Answer  »

If u = 〈u1, u2〉 = 〈1, 0〉, then 

Du f (a, b) = lim
h→0

f (a + h u1, b + h u2) - f (a, b)

h

= lim
h→0

f (a + h, b) - f (a, b)

h
= fx(a, b).

Similarly,  when u = 〈0, 1〉, the partial  derivative  fy (a, b) results.

As with ordinary  derivatives,  we would  prefer  to evaluate  directional  derivatives  without  taking  limits.  

Fortunately,  there is an easy way to express  the directional  derivative  in terms  of partial  derivatives.

The key is to define  a function  that is equal  to f  along the line ℓ through  (a, b) in the direction  of the unit 

vector  u = 〈u1, u2〉. The points  on ℓ satisfy  the parametric  equations  

x = a + s u1 and y = b + s u2,

where  -∞ < s <∞. Because  u is a unit vector,  the parameter  s corresponds  to arc length.  As s increases,  the 

points  (x, y) move along ℓ in the direction  of u with s = 0 corresponding  to (a, b). Now we define  the function  

g (s) = f a + s u1

x

, b + s u2

y

,

which  gives the values  of f  along ℓ. The derivative  of f  along ℓ is g ' (s), and when evaluated  at s = 0, it is the 

directional  derivative  of f  at (a, b); that is, g ' (0) = Du f (a, b).

Note  »

To see  that  s  is an arc  length  parameter,  note  that  the  line  ℓ may  be written  in 

the  form  

r(s) = 〈a + s u1, b + s u2〉.

Therefore,  r ' (s) = 〈u1, u2〉 and  r ' (s) = 1. It follows  by the  discussion  in 

Section  14.4  that  s  is an arc  length  parameter.  Note  that  g ' (s) does  not  

correctly  measure  the  slope  of f  along  ℓ unless  u is a unit  vector.

Noting  that 
d x

d s
= u1 and 

d y

d s
= u2, we apply  the Chain  Rule to find that 
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Du f (a, b) = g ' (0) =
∂ f

∂x

d x

d s⏟
u1

+
∂ f

∂y

d y

d s⏟
u2 s = 0

Chain Rule

= fx(a, b) u1 + fy (a, b) u2 s = 0 corresponds to (a, b).

= fx(a, b), fy (a, b) ·〈u1, u2〉. Identify dot product .

We see that the directional  derivative  is a weighted  average  of the partial  derivatives  fx(a, b) and fy (a, b), with 

the components  of u serving  as the weights.  In other  words,  knowing  the slope of the surface  in the x- and y-

directions  allows  us to find the slope in any direction.  Notice  that the directional  derivative  can be written  as a 

dot product,  which  provides  a practical  formula  for computing  directional  derivatives.

Quick Check 2   In the parametric  description  x = a + s u1 and y = b + s u2, where  u = 〈u1, u2〉 is a unit 

vector,  show that any positive  change  Δs in s produces  a line segment  of length  Δs.  ◆
Answer  »

THEOREM  15.10 Directional  Derivative

Let f  be differentiable  at (a, b) and let u = 〈u1, u2〉 be a unit vector  in the xy-plane.  The directional  

derivative  of f  at (a, b) in the direction  of u is 

Du f (a, b) = fx(a, b), fy (a, b) ·〈u1, u2〉.

EXAMPLE  1 Computing  directional  derivatives

Consider  the paraboloid  z = f (x, y) =
1

4
x2 + 2 y2 + 2. Let P0 be the point  (3, 2) and consider  the unit vectors  

u =  1

2
,

1

2
 and v =  1

2
, -

3

2
.

a. Find the directional  derivative  of f  at P0 in the directions  of u and v.

b. Graph  the surface  and interpret  the directional  derivatives.

SOLUTION   »

a. We see that fx =
x

2
 and fy = y ; evaluated  at (3, 2), we have fx(3, 2) =

3

2
 and fy (3, 2) = 2. The directional  

derivatives  in the directions  u and v are 

Du f (3, 2) = fx(3, 2), fy (3, 2) ·〈u1, u2〉
=

3

2
·

1

2
+ 2 ·

1

2
=

7

2 2
≈ 2.47 and

Dv f (3, 2) = fx(3, 2), fy (3, 2) ·〈v1, v2〉

=
3

2
·

1

2
+ 2 -

3

2
=

3

4
- 3 ≈ -0.98.

b. In the direction  of u, the directional  derivative  is approximately  2.47. Because  it is positive,  the function  is 

increasing  at (3, 2) in this direction.  Equivalently,  if Q is the vertical  plane  containing  u and C  is the curve  along 
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which  the surface  intersects  Q, then the slope of the line tangent  to C  is approximately  2.47 (Figure  15.48 ). In 

the direction  of v, the directional  derivative  is approximately  -0.98. Because  it is negative,  the function  is 

decreasing  in this direction.  In this case,  the vertical  plane  Q contains  v and again C  is the curve  along which  

the surface  intersects  Q; the slope of the line tangent  to C  is approximately  -0.98.

Note  »

It is understood  that  the  line  tangent  to C  in the  direction  of u lies  in the  

vertical  plane  containing  u.

u = 
1

2

,

1

2



v = 
1

2

, -

3

2



show
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Figure 15.48

Related  Exercises  11–12  ◆
Quick Check 3   In Example  1, evaluate  D-u f (3, 2) and D-v f (3, 2).  ◆
Answer  »

The Gradient Vector  »

We have seen that the directional  derivative  can be written  as a dot product:  

Du f (a, b) = fx(a, b), fy (a, b) ·〈u1, u2〉. The vector  fx(a, b), fy (a, b) that appears  in the dot product  is impor -

tant in its own right and is called  the gradient of f .
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DEFINITION Gradient  (Two Dimensions)

Let f  be differentiable  at the point  (x, y). The gradient of f  at (x, y) is the vector-valued  function  

∇f (x, y) = fx(x, y), fy (x, y) = fx(x, y) i + fy (x, y) j.

Note  »

With the definition  of the gradient,  the directional  derivative  of f  at (a, b) in the direction  of the unit 

vector  u can be written  

Du f (a, b) = ∇f (a, b) ·u.

The gradient  satisfies  sum, product,  and quotient  rules analogous  to those  for ordinary  derivatives  (Exercise  85).

EXAMPLE  2 Computing  gradients

Find ∇f (3, 2) for f (x, y) = x2 + 2 x y - y3.

SOLUTION   »

Computing  fx = 2 x + 2 y  and fy = 2 x - 3 y2, we have 

∇f (x, y) = 2 (x + y), 2 x - 3 y2 = 2 (x + y) i + 2 x - 3 y2 j.

Substituting  x = 3 and y = 2 gives 

∇f (3, 2) = 〈10, -6〉 = 10 i - 6 j.

Related  Exercises  13–15  ◆
EXAMPLE  3 Computing  directional  derivatives  with gradients

Let f (x, y) = 3 -
x2

10
+

x y2

10
.

a. Compute  ∇f (3, -1).

b. Compute  Du f (3, -1), where  u =  1

2
, -

1

2
.

c. Compute  the directional  derivative  of f  at (3, -1) in the direction  of the vector  〈3, 4〉.
SOLUTION   »

a. Note that fx = -
x

5
+

y2

10
 and fy =

x y

5
. Therefore,  

∇f (3, -1) = - x

5
+

y2

10
,

x y

5


(3,-1)

= - 1

2
, -

3

5
 .

b. Before  computing  the directional  derivative,  it is important  to verify  that u is a unit vector  (in this case,  it 

is). The required  directional  derivative  is 
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Du f (3, -1) = ∇f (3, -1) ·u = - 1

2
, -

3

5
 · 1

2
, -

1

2
 = 1

10 2
.

Figure  15.49  shows  the line tangent  to the trace in the plane  corresponding  to u whose  slope is Du f (3, -1).

show

surface
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curve C

show grids

Figure 15.49

c. In this case,  the direction  is given in terms of a nonunit vector.  The vector  〈3, 4〉 has length  5, so the unit 

vector  in the direction  of 〈3, 4〉 is u =  3

5
,

4

5
. The directional  derivative  at (3, -1) in the direction  of u is 

Du f (3, -1) = ∇f (3, -1) ·u = - 1

2
, -

3

5
 · 3

5
,

4

5
 = -

39

50
,

which  gives the slope of the surface  in the direction  of 〈3, 4〉 at (3, -1).

Related  Exercises  22, 27  ◆
Interpretations of the Gradient  »

The gradient  is important  not only in calculating  directional  derivatives;  it plays  many  other  roles in multivari -

able calculus.  Our present  goal is to develop  some intuition  about  the meaning  of the gradient.

We have seen that the directional  derivative  of f  at (a, b) in the direction  of the unit vector  u is 
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Du f (a, b) = ∇f (a, b) ·u. Using  properties  of the dot product,  we have 

Note  »

Du f (a, b) = ∇f (a, b) ·u

= ∇f (a, b) u cos θ
= ∇f (a, b) cos θ, u  = 1

where  θ is the angle  between  ∇f (a, b) and u. If follows  that Du f (a, b) has its maximum  value when cos θ = 1, 

which  corresponds  to θ = 0. Therefore,  Du f (a, b) has its maximum  value and f  has its greatest  rate of increase 

when ∇f (a, b) and u point  in the same direction.  Notice  that when cos θ = 1, the actual  rate of increase  is 

Du f (a, b) = ∇f (a, b) (Figure  15.50 ).

Note  »

a

b

show surface

Figure 15.50

Similarly,  when θ = π, we have cos θ = -1, and f  has its greatest  rate of decrease when ∇f (a, b) and u point  

in opposite  directions.  The actual  rate of decrease  is Du f (a, b) = -∇f (a, b). These  observations  are summa -

rized as follows:  The gradient  ∇f (a, b) points  in the direction  of steepest  ascent  at (a, b), while  -∇f (a, b) points  

in the direction  of steepest  descent .

Notice  that Du f (a, b) = 0 when the angle  between  ∇f (a, b) and u is 
π
2

, which  means  ∇f (a, b) and u are 

orthogonal  (Figure  15.50).  These  observations  justify  the following  theorem.
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THEOREM  15.11 Directions  of Change

Let f  be differentiable  at (a, b) with ∇f (a, b) ≠ 0.

1. f  has its maximum  rate of increase  at (a, b) in the direction  of the gradient  ∇f (a, b). The 

rate of increase  in this direction  is ∇f (a, b). 
2. f  has its maximum  rate of decrease  at (a, b) in the direction  of -∇f (a, b). The rate of change  

in this direction  is -∇f (a, b).
3. The directional  derivative  is zero in any direction  orthogonal  to ∇f (a, b).

EXAMPLE  4 Steepest  ascent  and descent

Consider  the bowl-shaped  paraboloid  z = f (x, y) = 4 + x2 + 3 y2.

a. If you are located  on the paraboloid  at the point  2, -
1

2
,

35

4
, in which  direction  should  you move in 

order to ascend on the surface  at the maximum  rate? What  is the rate of change?

b. If you are located  at the point  2, -
1

2
,

35

4
, in which  direction  should  you walk in order  to descend on the 

surface  at the maximum  rate? What  is the rate of change?

c. At the point  (3, 1, 16), in what  direction(s)  is there no change  in the function  values?

SOLUTION   »

EXAMPLE  5 Interpreting  directional  derivatives

Consider  the function  f (x, y) = 3 x2 - 2 y2.

a. Compute  ∇f (x, y) and ∇f (2, 3).

b. Let u = 〈cos θ, sin θ〉 be a unit vector.  At (2, 3), for what  values  of θ (measured  relative  to the positive  x-

axis),  with 0 ≤ θ < 2 π, does the directional  derivative  have its maximum  and minimum  values  and what are 

those values?

SOLUTION   »

a. The gradient  is ∇f (x, y) = fx , fy  = 〈6 x, -4 y〉, and at (2, 3), we have ∇f (2, 3) = 〈12, -12〉.

b. The gradient  ∇f (2, 3) = 〈12, -12〉 makes  an angle  of 
7 π
4

 with the positive  x-axis.  So, the maximum  rate of 

change  of f  occurs  in this direction,  and that rate of change  is ∇f (2, 3) = 〈12, -12〉 = 12 2 ≈ 17. The direc-

tion of maximum  decrease  is opposite  to the direction  of the gradient,  which  corresponds  to θ = 3 π
4

. The 

maximum  rate of decrease  is the negative  of the maximum  rate of increase,  or -12 2 ≈ -17. The function  has 

zero change  in the directions  orthogonal  to the gradient,  which  correspond  to θ = π
4

 and θ = 5 π
4

.

Figure  15.52  summarizes  these conclusions.  Notice  that the gradient  at (2, 3) appears  to be orthogonal  
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to the level  curve  of f  passing  through  (2, 3). We next see that this is always  the case.

Figure 15.52

Related  Exercises  37–38  ◆
The Gradient and Level Curves  »

Theorem  15.11 states  that in any direction  orthogonal  to the gradient  ∇f (a, b), the function  f  does not change  

at (a, b). Recall  from Section  15.1 that the curve  f (x, y) = z0, where  z0 is a constant,  is a level curve , on which  

function  values  are constant.  Combining  these two observations,  we conclude  that the gradient  ∇f (a, b) is 

orthogonal  to the line tangent  to the level  curve  through  (a, b).

THEOREM  15.12 The Gradient  and Level  Curves

Given a function  f  differentiable  at (a, b), the line tangent  to the level  curve  of f  at (a, b) is 

orthogonal  to the gradient  ∇f (a, b), provided  ∇f (a, b) ≠ 0.

Proof:  Consider  the function z = f (x, y) and its level  curve  f (x, y) = z0, where  the constant  z0 is chosen  so that 

the curve  passes  through  the point  (a, b). Let r(t ) = 〈x(t ), y(t )〉 be a parametrization  for the level  curve  near 

(a, b) (where  it is smooth)  and let r(t0) correspond  to the point  (a, b). We now differentiate  f (x, y) = z0 with 

respect  to t . The derivative  of the right side is 0. Applying  the Chain  Rule to the left side results  in 

d

d t
(f (x, y)) =

∂ f

∂x

d x

d t
+
∂ f

∂y

d y

d t

=  ∂ f

∂x
,
∂ f

∂y


∇ f (x ,y )

·d x

d t
,

d y

d t


r' (t )

= ∇f (x, y) ·r ' (t ).

Substituting  t = t0, we have ∇f (a, b) ·r ' (t0) = 0, which  implies  that r ' (t0) (the tangent  vector  at (a, b)) is orthogo -

nal to ∇f (a, b). Figure  15.53  illustrates  the geometry  of the theorem.   ◆
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Figure 15.53

An immediate  consequence  of Theorem  15.12 is an alternative  equation  of the tangent  line. The curve  

described  by f (x, y) = z0 can be viewed  as a level  curve  for a surface.  By Theorem  15.12,  the line tangent  to the 

curve at (a, b) is orthogonal  to ∇f (a, b). Therefore,  if (x, y) is a point  on the tangent  line, then 

∇f (a, b) ·〈x - a, y - b〉 = 0, which,  when simplified,  gives an equation  of the line tangent  to the curve  

f (x, y) = z0: 

fx(a, b) (x - a) + fy (a, b) (y - b) = 0.

Quick Check 4   Draw a circle  in the xy-plane  centered  at the origin  and regard  it is as a level  curve  of the 

surface  z = x2 + y2. At the point  (a, a) of the level  curve,  the slope of the tangent  line is -1. Show that the 

gradient  at (a, a) is orthogonal  to the tangent  line.  ◆
Answer  »

The gradient  is 〈2 x, 2 y〉, which,  evaluated  at (a, a), is 〈2 a, 2 a〉. Taking  the dot product  of the 

gradient  and the vector  〈-1, 1〉 (a vector  parallel  to a line of slope -1), we see that 
〈2 a, 2 a〉 ·〈-1, 1〉 = 0.

EXAMPLE  6 Gradients  and level curves

Consider  the upper  sheet  z = f (x, y) = 1 + 2 x2 + y2  of a hyperboloid  of two sheets.

a. Verify  that the gradient  at (1, 1) is orthogonal  to the corresponding  level  curve  at that point.

b. Find an equation  of the line tangent  to the level  curve  at (1, 1).

SOLUTION   »

EXAMPLE  7 Path of steepest  descent

The paraboloid  z = f (x, y) = 4 + x2 + 3 y2 is shown  in Figure  15.55 . A ball is released  at the point  (3, 4, 61) on 

the surface  and it follows  the path of steepest  descent  C  to the vertex  of the paraboloid.

a. Find an equation  of the projection  of C  in the x y-plane.

b. Find an equation  of C  on the paraboloid.
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show path

x

show surface

show grids

Figure 15.55

SOLUTION   »

a. The projection  of C  in the xy-plane  points  in the direction  of -∇f (x, y) = 〈-2 x, -6 y〉, which  means  that 

at the point (x, y) the line tangent  to the path has slope y ' (x) =
-6 y

-2 x
=

3 y

x
. Therefore,  the path in the xy-plane

satisfies  y ' (x) =
3 y

x
 and passes  through  the initial  point  (3, 4). You can verify  that the solution  to this differen -

tial equation  is y =
4 x3

27
. Therefore,  the projection  of the path of steepest  descent  in the xy-plane  is the curve  

y =
4 x3

27
. The descent  ends at (0, 0), which  corresponds  to the vertex  of the paraboloid  (Figure  15.55).  At all 

points  of the descent,  the curve  in the xy-plane  is orthogonal  to the level  curves  of the surface.

b. To find a parametric  description  of C , it is easiest  to define  the parameter  t = x. Using  part (a), we find 

that 

y =
4 x3

27
=

4 t 3

27
and z = 4 + x2 + 3 y2 = 4 + t 2 +

16

243
t 6.
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Because  0 ≤ x ≤ 3, the parameter  t  varies  over the interval  0 ≤ t ≤ 3. A parametric  description  of C  is 

C : r(t ) = t ,
4 t 3

27
, 4 + t 2 +

16

243
t 6, for 0 ≤ t ≤ 3.

With this parameterization,  C  is traced  from r(0) = 〈0, 0, 4〉 to r(3) = 〈3, 4, 61〉—in the direction  opposite  to that 

of the ball’s  descent.

Related  Exercise  57  ◆

Quick Check 5   Verify  that y =
4 x3

27
 satisfies  the equation  y ' (x) =

3 y

x
, with y(3) = 4. 

The Gradient in Three Dimensions  »

The directional  derivative,  the gradient,  and the idea of a level  curve  extend  immediately  to functions  of three 

variables  of the form w = f (x, y , z). The main differences  are that the gradient  is a vector  in ℝ3 and level  curves  

become  level surfaces  (Section  15.1).  Here is how the gradient  looks  when we step up one dimension.

The easiest  way to visualize  the surface  w = f (x, y , z) is to picture  its level  surfaces—the  surfaces  in ℝ3 on 

which  f  has a constant  value.  The level  surfaces  are given by the equation  f (x, y , z) = C , where  C  is a constant  

(Figure  15.56 ). The level  surfaces  can be graphed,  and they may be viewed  as layers  of the full four-dimen -

sional  surface  (like layers  of an onion).  With this image  in mind,  we now extend  the concept  of a gradient.

Figure 15.56

Given the function  w = f (x, y , z), we begin  just as we did in the two-variable  case and define  the direc-

tional  derivative  and the gradient.
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DEFINITION Directional  Derivative  and Gradient  in Three  Dimensions

Let f  be differentiable  at (a, b, c) and let u = 〈u1, u2, u3〉 be a unit vector.  The directional  

derivative  of f  at (a, b, c) in the direction  of u is 

Du f (a, b, c) = lim
h→0

f (a + h u1, b + h u2, c + h u3) - f (a, b, c)

h
,

provided  this limit  exists.

The gradient of f  at the point  (x, y , z) is the vector-valued  function  

∇f (x, y , z) = fx(x, y , z), fy (x, y , z), fz(x, y , z)
= fx(x, y , z) i + fy (x, y , z) j + fz(x, y , z) k.

An argument  similar  to that given in two dimensions  leads from the definition  of the directional  deriva -

tive to a computational  formula.  Given  a unit vector  u = 〈u1, u2, u3〉, the directional  derivative  of f  in the 

direction  of u at the point  (a, b, c) is 

Du f (a, b, c) = fx(a, b, c) u1 + fy (a, b, c) u2 + fz(a, b, c) u3.

As before,  we recognize  this expression  as a dot product  of the vector  u and the vector  

∇f (a, b, c) = fx(a, b, c), fy (a, b, c), fz(a, b, c), which  is the gradient  evaluated  at (a, b, c). These  observations  

lead to Theorem  15.13,  which  mirrors  Theorems  15.10 and 15.11.

THEOREM  15.13 Directional  Derivative  and Interpreting  the Gradient

Let f  be differentiable  at (a, b, c) and let u = 〈u1, u2, u3〉 be a unit vector.  The directional  

derivative  of f  at (a, b, c) in the direction  of u is 

Du f (a, b, c) = ∇f (a, b, c) ·u

= fx(a, b, c), fy (a, b, c), fz(a, b, c) ·〈u1, u2, u3〉.
Assuming  ∇f (a, b, c) ≠ 0, the gradient  in three dimensions  has the following  properties.

1.  f  has its maximum  rate of increase  at (a, b, c) in the direction  of the gradient  ∇f (a, b, c) and 

the rate of change  in this direction  is ∇f (a, b, c).
2.  f  has its maximum  rate of decrease  at (a, b, c) in the direction  of -∇f (a, b, c) and the rate of 

change  in this direction  is -∇f (a, b, c).
3.  The directional  derivative  is zero in any direction  orthogonal  to ∇f (a, b, c).

Note  »

When  we  introduce  the  tangent  plane  in Section  15.6,  we  can  also  claim  that  

∇ f (a , b , c) is orthogonal  to the  level  surface  that  passes  through  (a , b , c).

Quick Check 6   Compute  ∇f (-1, 2, 1) when f (x, y , z) =
x y

z
.  ◆

Answer  »

〈2, -1, 2〉
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EXAMPLE  8 Gradients  in three dimensions

Consider  the function  f (x, y , z) = x2 + 2 y2 + 4 z2 - 1 and its level  surface  f (x, y , z) = 3.

a. Find and interpret  the gradient  at the points  P(2, 0, 0), Q0, 2 , 0, R(0, 0, 1), and S 1, 1,
1

2
 on the level  

surface.

b. What are the actual  rates of change  of f  in the directions  of the gradients  in part (a)?

SOLUTION   »

a. The gradient  is 

∇f = fx , fy , fz = 〈2 x, 4 y , 8 z〉.
Evaluating  the gradient  at the four points  we find that 

∇f (2, 0, 0) = 〈4, 0, 0〉, ∇f 0, 2 , 0 = 0, 4 2 , 0,
∇f (0, 0, 1) = 〈0, 0, 8〉, and ∇f 1, 1,

1

2
= 〈2, 4, 4〉.

The level  surface  f (x, y , z) = 3 is an ellipsoid  (Figure  15.57 ), which  is one layer of a four-dimensional  surface.  

The four points  P , Q, R, and S are shown  on the level  surface  with the respective  gradient  vectors.  In each case,  

the gradient  points  in the direction  that f  has its maximum  rate of increase.  Of particular  importance  is the 

fact—to  be made  clear in the next section—that  at each point,  the gradient  is orthogonal  to the level  surface.

Figure 15.57

b. The actual  rate of increase  of f  at (a, b, c) in the direction  of the gradient  is ∇f (a, b, c). At P , the rate of 

increase  of f  in the direction  of the gradient  is 〈4, 0, 0〉 = 4; at Q, the rate of increase  is 0, 4 2 , 0 = 4 2 ; at 

R the rate of increase  is 〈0, 0, 8〉 = 8; and at S, the rate of increase  is 〈2, 4, 4〉 = 6.

Related  Exercises  59–60  ◆
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Exercises »

Getting  Started   »

Practice  Exercises   »

11. Directional  derivatives   Consider  the function  f (x, y) = 8 -
x2

2
- y2, whose  graph  is a paraboloid  

(see figure).

(a, b) = (2, 0) (a, b) = (0, 2) (a, b) = (1, 1)

u =  2

2
,

2

2


v = - 2

2
,

2

2


w = - 2

2
, -

2

2


a. Fill in the table with the values  of the directional  derivative  at the points  (a, b) in the directions  

given by the unit vectors  u, v, and w.

b. Interpret  each of the directional  derivatives  computed  in part (a) at the point  (2, 0).

12. Directional  derivatives   Consider  the function  f (x, y) = 2 x2 + y2, whose  graph  is a paraboloid  (see 

figure).
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(a, b) = (1, 0) (a, b) = (1, 1) (a, b) = (1, 2)

u = 〈1, 0〉

v =  2

2
,

2

2


w = 〈0, 1〉
a. Fill in the table with the values  of the directional  derivative  at the points  (a, b) in the directions  

given by the unit vectors  u, v, and w.

b. Interpret  each of the directional  derivatives  computed  in part (a) at the point  (1, 0).

13–20.  Computing  gradients   Compute  the gradient  of the following  functions  and evaluate  it at the given 

point P.

13. f (x, y) = 2 + 3 x2 - 5 y2; P(2, -1)

14. f (x, y) = 4 x2 - 2 x y + y2; P(-1, -5)

15. g (x, y) = x2 - 4 x2 y - 8 x y2; P(-1, 2)

16. p(x, y) = 12 - 4 x2 - y2 ; P(-1, -1)

17. f (x, y) = x e2 x y ; P(1, 0)

18. f (x, y) = sin (3 x + 2 y); P π,
3 π
2

19. F (x, y) = e-x2-2 y 2

; P(-1, 2)

20. h(x, y) = ln 1 + x2 + 2 y2; P(2, -3)
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21–30.  Computing  directional  derivatives  with the gradient   Compute  the directional  derivative  of the 

following  functions  at the given point  P in the direction  of the given vector.  Be sure to use a unit vector  for 

the direction  vector.

21. f (x, y) = x2 - y2; P(-1, -3);  3

5
, -

4

5


22. f (x, y) = 3 x2 + y3; P(3, 2);  5

13
,

12

13


23. f (x, y) = 10 - 3 x2 +
y4

4
; P(2, -3);  3

2
, -

1

2


24. g (x, y) = sin π(2 x - y); P(-1, -1);  5

13
, -

12

13


25. f (x, y) = 4 - x2 - 2 y ; P(2, -2);  1

5
,

2

5


26. f (x, y) = 13 ex y ; P(1, 0); 〈5, 12〉
27. f (x, y) = 3 x2 + 2 y + 5; P(1, 2); 〈-3, 4〉
28. h(x, y) = e-x-y ; P(ln 2, ln 3); 〈1, 1〉
29. g (x, y) = ln 4 + x2 + y2; g (-1, 2); 〈2, 1〉

30. f (x, y) =
x

x - y
; P(4, 1); 〈-1, 2〉

31–36.  Direction  of steepest  ascent  and descent   Consider  the following  functions  and points  P.

a. Find the unit vectors  that give the direction  of steepest  ascent  and steepest  descent  at P.

b. Find a vector  that points  in a direction  of no change  in the function  at P.

31. f (x, y) = x2 - 4 y2 - 9; P(1, -2)

32. f (x, y) = x2 + 4 x y - y2; P(2, 1)

33. f (x, y) = x4 - x2 y + y2 + 6; P(-1, 1)

34. p(x, y) = 20 + x2 + 2 x y - y2 ; P(1, 2)

35. F (x, y) = e-x22-y 22; P(-1, 1)

36. f (x, y) = 2 sin (2 x - 3 y); P(0, π)
37–42.  Interpreting  directional  derivatives   A function  f  and a point  P are given.  Let θ correspond  to the 

direction  of the directional  derivative.

a. Find the gradient  and evaluate  it at P.
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b. Find the angles  θ (with respect  to the positive  x-axis)  associated  with the directions  of maximum  

increase,  maximum  decrease,  and zero change.

c. Write  the directional  derivative  at P as a function  of θ; call this function  g .

d. Find the value  of θ that maximizes  g (θ) and find the maximum  value.

e. Verify  that the value  of θ that maximizes  g corresponds  to the direction  of the gradient.  Verify  that

the maximum  value  of g  equals  the magnitude  of the gradient.

37. f (x, y) = 10 - 2 x2 - 3 y2; P(3, 2)

38. f (x, y) = 8 + x2 + 3 y2; P(-3, -1)

39. f (x, y) = 2 + x2 + y2 ; P 3 , 1

40. f (x, y) = 12 - x2 - y2 ; P -1, -
1

3

41. f (x, y) = e-x2-2 y 2

; P(-1, 0)

T 42. f (x, y) = ln 1 + 2 x2 + 3 y2; P
3

4
, - 3

43–46.  Directions  of change   Consider  the following  functions  f  and points  P. Sketch  the xy-plane  

showing  P and the level  curve  through  P. Indicate  (as in Figure  15.52)  the directions  of maximum  increase,  

maximum  decrease,  and no change  for f .

43. f (x, y) = 8 + 4 x2 + 2 y2; P(2, -4)

44. f (x, y) = -4 + 6 x2 + 3 y2; P(-1, -2)

T 45. f (x, y) = x2 + x y + y2 + 7; P(-3, 3)

T 46. f (x, y) = tan (2 x + 2 y); P
π

16
,
π

16

47–50.  Level  curves   Consider  the paraboloid  f (x, y) = 16 -
x2

4
-

y2

16
 and the point  P on the given level  

curve of f . Compute  the slope of the line tangent  to the level  curve  at P and verify  that the tangent  line is 

orthogonal  to the gradient  at that point.

47. f (x, y) = 0; P(0, 16)

48. f (x, y) = 0; P(8, 0)

49. f (x, y) = 12; P(4, 0)

50. f (x, y) = 12; P2 3 , 4
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51–54.  Level  curves   Consider  the upper  half of the ellipsoid  f (x, y) = 1 -
x2

4
-

y2

16
 and the point  P on 

the given level  curve  of f . Compute  the slope of the line tangent  to the level  curve  at P and verify  that the 

tangent  line is orthogonal  to the gradient  at that point.

51. f (x, y) =
3

2
; P

1

2
, 3

52. f (x, y) =
1

2
; P0, 8 

53. f (x, y) =
1

2
; P 2 , 0

54. f (x, y) =
1

2
; P(1, 2)

55–58.  Path of steepest  descent   Consider  each of the following  surfaces  and the point  P on the surface.

a. Find the gradient  of f .

b. Let C '  be the path of steepest  descent  on the surface  beginning  at P and let C  be the projection  of 

C '  on the xy-plane.  Find an equation  of C  in the xy-plane.

c. Find parametric  equations  for the path C '  on the surface.

55. f (x, y) = 4 + x  (a plane);  P(4, 4, 8)

56. f (x, y) = y + x  (a plane);  P(2, 2, 4)

57. f (x, y) = 4 - x2 - 2 y2 (a paraboloid);  P(1, 1, 1)

58. f (x, y) = y + x-1; P(1, 2, 3)

59–66.  Gradients  in three  dimensions   Consider  the following  functions  f , points  P, and unit vectors  u.

a. Compute  the gradient  of f  and evaluate  it at P.

b. Find the unit vector  in the direction  of maximum  increase  of f  at P.

c. Find the rate of change  of the function  in the direction  of maximum  increase  at P.

d. Find the directional  derivative  at P in the direction  of the given vector.

59. f (x, y , z) = x2 + 2 y2 + 4 z2 + 10; P(1, 0, 4);  1

2
, 0,

1

2


60. f (x, y , z) = 4 - x2 + 3 y2 +
z2

2
; P(0, 2, -1); 0,

1

2
, -

1

2


61. f (x, y , z) = 1 + 4 x y z; P(1, -1, -1);  1

3
,

1

3
, -

1

3
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62. f (x, y , z) = x y + y z + x z + 4; P(2, -2, 1); 0, -
1

2
, -

1

2


63. f (x, y , z) = 1 + sin (x + 2 y - z); P
π
6

,
π
6

, -
π
6

;  1

3
,

2

3
,

2

3


64. f (x, y , z) = ex y z-1; P(0, 1, -1); - 2

3
,

2

3
, -

1

3


65. f (x, y , z) = ln 1 + x2 + y2 + z2; P(1, 1, -1);  2

3
,

2

3
, -

1

3


66. f (x, y , z) =
x - z

y - z
; P(3, 2, -1);  1

3
,

2

3
, -

2

3


67. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. If f (x, y) = x2 + y2 - 10, then ∇f (x, y) = 2 x + 2 y .

b. Because  the gradient  gives the direction  of maximum  increase  of a function,  the gradient  is 

always  positive.

c. The gradient  of f (x, y , z) = 1 + x y z  has four components.

d. If f (x, y , z) = 4, then ∇f = 0.

68. Gradient  of a composite  function   Consider  the function  F (x, y , z) = ex y z .

a. Write F  as a composite  function  f ∘g , where  f  is a function  of one variable  and g  is a function  of 

three variables.

b. Relate  ∇F  to ∇g .

69–72.  Directions  of zero change   Find the directions  in the xy-plane  in which  the following  functions  

have zero change  at the given point.  Express  the directions  in terms of unit vectors.

69. f (x, y) = 12 - 4 x2 - y2; P(1, 2, 4)

70. f (x, y) = x2 - 4 y2 - 8; P(4, 1, 4)

71. f (x, y) = 3 + 2 x2 + y2 ; P(1, -2, 3)

72. f (x, y) = e1-x y ; P(1, 0, e)

73. Steepest  ascent  on a plane   Suppose  a long sloping  hillside  is described  by the plane 

z = a x + b y + c, where  a, b, and c  are constants.  Find the path in the xy-plane,  beginning  at (x0, y0), 

that corresponds  to the path of steepest  ascent  on the hillside.

74. Gradient  of a distance  function   Let (a, b) be a given point  in ℝ2 and let d = f (x, y) be the distance  

between  (a, b) and the variable  point  (x, y).

a. Show that the graph  of f  is a cone.

b. Show that the gradient  of f  at any point  other  than (a, b) is a unit vector.

c. Interpret  the direction  and magnitude  of ∇f .
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75–78.  Looking  ahead—tangent  planes   Consider  the following  surfaces  f (x, y, z) = 0, which  may be 

regarded  as a level  surface  of the function  w = f (x, y, z). A point  P(a, b, c) on the surface  is also given.

a. Find the (three-dimensional)  gradient  of f  and evaluate  it at P.

b. The set of all vectors  orthogonal  to the gradient  with their  tails at P form a plane.  Find an 

equation  of that plane  (soon to be called  the tangent  plane).

75. f (x, y , z) = x2 + y2 + z2 - 3 = 0; P(1, 1, 1)

76. f (x, y , z) = 8 - x y z = 0; P(2, 2, 2)

77. f (x, y , z) = ex+y-z - 1 = 0; P(1, 1, 2)

78. f (x, y , z) = x y + x z - y z - 1 = 0; P(1, 1, 1)

T 79. A traveling  wave   A snapshot  (frozen  in time)  of a set of water  waves  is described  by the function  

z = 1 + sin (x - y), where  z  gives the height  of the waves  and (x, y) are coordinates  in the horizontal  

plane z = 0.

a. Use a graphing  utility  to graph  z = 1 + sin (x - y).

b. The crests  and the troughs  of the waves  are aligned  in the direction  in which  the height  function  

has zero change.  Find the direction  in which  the crests  and troughs  are aligned.

c. If you were surfing  on one of these waves  and wanted  the steepest  descent  from the crest  to the 

trough,  in which  direction  would  you point  your surfboard  (given  in terms of a unit vector  in the 

xy-plane)?

d. Check  that your answers  to parts  (b) and (c) are consistent  with the graph  of part (a).

80. Traveling  waves  in general   Generalize  Exercise  79 by considering  a set of waves  described  by the 

function  z = A + sin (a x - b y), where  a, b, and A are real numbers.

a. Find the direction  in which  the crests  and troughs  of the waves  are aligned.  Express  your answer  

as a unit vector  in terms of a and b.

b. Find the surfer's  direction—that  is, the direction  of steepest  descent  from a crest  to a trough.  

Express  your answer  as a unit vector  in terms of a and b.

Explorations  and Challenges   »

81–83.  Potential  functions   Potential  functions  arise frequently  in physics  and engineering.  A potential  

function  has the property  that a field of interest  (for example,  an electric  field,  a gravitational  field,  or a 

velocity  field)  is the gradient  of the potential  (or sometimes  the negative  of the gradient  of the potential).  

(Potential  functions  are considered  in depth  in Chapter  17.)

81. Electric  potential  due to a point  charge   The electric  field due to a point  charge  of strength  Q at the 

origin  has a potential  function  ϕ =
k Q

r
, where  r 2 = x2 + y2 + z2 is the square  of the distance  between  

a variable  point  P(x, y , z) and the charge,  and k > 0 is a physical  constant.  The electric  field is given 

by E = -∇ϕ, where  ∇ϕ is the gradient  in three dimensions.

a. Show that the three-dimensional  electric  field due to a point  charge  is given by 

E(x, y , z) = k Q  x

r 3
,

y

r 3
,

z

r 3
.

Section 15.5  Directional Derivatives and the Gradient 23

Copyright © 2019 Pearson Education, Inc.



b. Show that the electric  field at a point  has a magnitude  E = k Q

r 2
. Explain  why this relationship  is 

called an inverse  square  law.

82. Gravitational  potential   The gravitational  potential  associated  with two objects  of mass M  and m is 

ϕ = -
G M m

r
, where  G  is the gravitational  constant.  If one of the objects  is at the origin  and the other  

object  is at P(x, y , z), then r 2 = x2 + y2 + z2 is the square  of the distance  between  the objects.  The 

gravitational  field at P  is given by F = -∇ϕ, where  ∇ϕ is the gradient  in three dimensions.  Show that 

the force has a magnitude  F = G M m

r 2
. Explain  why this relationship  is called  an inverse  square  law.

83. Velocity  potential   In two dimensions,  the motion  of an ideal  fluid (an incompressible  and 

irrotational  fluid)  is governed  by a velocity  potential  ϕ. The velocity  components  of the fluid,  u in the 

x-direction  and v  in the y-direction,  are given by 〈u, v〉 = ∇ϕ. Find the velocity  components  

associated  with the velocity  potential  ϕ(x, y) = sin πx sin 2 πy .

84. Gradients  for planes   Prove  that for the plane  described  by f (x, y) = A x + B y , where  A and B are 

nonzero  constants,  the gradient  is constant  (independent  of (x, y)). Interpret  this result.

85. Rules  for gradients   Use the definition  of the gradient  (in two or three dimensions),  assume  f  and g  

are differentiable  functions  on ℝ2 or ℝ3, and let c  be a constant.  Prove  the following  gradient  rules.

a. Constants  Rule:   ∇(c f ) = c ∇f

b. Sum Rule:   ∇(f + g ) = ∇f + ∇g

c. Product  Rule:   ∇(f g ) = (∇f ) g + f ∇g

d. Quotient  Rule:   ∇ f

g
=

g ∇f - f ∇g

g 2

e. Chain Rule:   ∇(f ∘g ) = f ' (g )∇g , where  f  is a function  of one variable

86–91.  Using  gradient  rules   Use the gradient  rules  of Exercise  85 to find the gradient  of the following  

functions.

86. f (x, y) = x y cos (x y)

87. f (x, y) =
x + y

x2 + y2

88. f (x, y) = ln 1 + x2 + y2

89. f (x, y , z) = 25 - x2 - y2 - z2

90. f (x, y , z) = (x + y + z) ex y z

91. f (x, y , z) =
x + y z

y + x z
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