
15.4 The Chain Rule

In this section,  we combine  ideas  based  on the Chain  Rule (Section  3.7) with what we know about  partial  

derivatives  (Section  15.3)  to develop  new methods  for finding  derivatives  of functions  of several  variables.  To 

illustrate  the importance  of these methods,  consider  the following  situation.

Economists  modeling  manufacturing  systems  often works  with production  functions  that relate  the 

productivity  (output)  of the system  to all the variables  on which  it depends  (input).  A simplified  production  

function  might  take the form P = F (L, K , R), where  L, K , and R represent  the availability  of labor,  capital,  and 

natural  resources,  respectively.  However,  the variables  L, K , and R may be intermediate  variables  that depend  

on other  variables.  For example,  it might  be that L is a function  of the unemployment  rate u, K  is a function  of 

the prime  interest  rate i, and R is a function  of time t  (seasonal  availability  of resources).  Even in this simplified  

model  we see that productivity,  which  is the dependent  variable,  is ultimately  related  to many  other  variables  

(Figure  15.35 ). Of critical  interest  to an economist  is how changes  in one variable  determine  changes  in other  

variables.  For instance,  if the unemployment  rate increases  by 0.1% and the interest  rate decreases  by 0.2%,

what is the effect  on productivity?  In this section  we develop  the tools  needed  to answer  such questions.

Figure 15.35

The Chain Rule with One Independent Variable  »

Recall  the basic  Chain  Rule:  If y  is a function  of u and u is a function  of t , then 
d y

d t
=

d y

d u

d u

d t
. We first extend  the 

Chain Rule to composite  functions  of the form z = f (x, y), where  x  and y  are functions  of t . What  is 
d z

d t
?

We illustrate  the relationships  among  the variables  t , x, y , and z  using  a tree diagram  (Figure  15.36 ). To 

find 
d z

d t
, first notice  that z  depends  on x, which  in turn depends  on t . The change  in z  with respect  to x  is 

∂z

∂x
, 

while  the change  in x  with respect  to t  is the ordinary  derivative  
d x

d t
. These  derivatives  appear  on the correspond

ing branches  of the tree diagram.  Using  the Chain  Rule idea,  the product  of these derivatives  gives the change  in 

z  with respect  to t  through  x.
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Figure 15.36

Similarly,  z  also depends  on y . The change  in z  with respect  to y  is 
∂z

∂y
, while  the change  in y  with respect  

to t  is 
d y

d t
. The product  of these derivatives,  which  appear  on the corresponding  branches  of the tree, gives the 

change  in z  with respect  to t  through  y . Summing  the contributions  to 
d z

d t
 along each branch  of the tree leads to 

the following  theorem,  whose  proof  is found  in Appendix  A.

THEOREM  15.7 Chain  Rule (One Independent  Variable)

Let z  be a differentiable  function  of x  and y  on its domain,  where  x  and y  are differentiable  

functions  of t  on an interval  I . Then,  

d z

d t
=

∂z

∂x

d x

d t
+

∂z

∂y

d y

d t
.

Note  »

A subtle  observation  about  notation  should  be made.  If z = f (x , y ), where  x  

and  y  are  functions  of another  variable  t , it is common  to write  z = f (t ) to show  

that  z  ultimately  depends  on  t . However,  these  two  functions  denoted  f  are  

actually  different.  To  be careful,  we  should  write  (or  at least  remember)  that  in 

fact  z = F (t ), where  F  is a function  other  than  f . This  distinction  is often  

overlooked  for  the  sake  of convenience.

Quick Check 1   Explain  why Theorem  15.7 reduces  to the Chain  Rule for a function  of one variable  in the 

case that z = f (x) and x = g (t ).  ◆
Answer  »

If z = f (x(t )), then 
∂z

∂y
= 0, and the original  Chain  Rule results.

Before  presenting  examples,  several  comments  are in order.

 With z = f (x(t ), y(t )), the dependent  variable  is z  and the sole independent  variable  is t . The variables  x  and 

y  are intermediate  variables .

 The choice  of notation  for partial  and ordinary  derivatives  in the Chain  Rule is important.  We write  ordinary  

derivatives  
d x

d t
 and 

d y

d t
 because  x  and y  depend  only on t . We write  partial  derivatives  

∂z

∂x
 and 

∂z

∂y
 because  z  
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is a function  of both x  and y . Finally,  we write  
d z

d t
 as an ordinary  derivative  because  z  ultimately  depends  

only on t .

 Theorem  15.7 generalizes  directly  to functions  of more than two intermediate  variables  (Figure  15.37 ). For 

example,  if w = f (x, y , z), where  x, y , and z  are functions  of the single  independent  variable  t , then 

d w

d t
=
∂w

∂x

d x

d t
+
∂w

∂y

d y

d t
+
∂w

∂z

d z

d t
.

Figure 15.37

EXAMPLE  1 Chain Rule with one independent  variable

Let z = x2 - 3 y2 + 20, where  x = 2 cos t  and y = 2 sin t .

a. Find 
d z

d t
 and evaluate  it at t =

π
4

.

b. Interpret  the result  geometrically.

Note  »

If f , x , and  y  are  simple,  as in Example  1, it is possible  to substitute  x(t ) and  y (t ) 

into  f , producing  a function  of t  only,  and  then  differentiate  with  respect  to t . 

But  this  approach  quickly  becomes  impractical  with  more  complicated  

functions  and  the  Chain  Rule  offers  a great  advantage.

SOLUTION   »

a. Computing  the intermediate  derivatives  and applying  the Chain  Rule (Theorem  15.7),  we find that

d z

d t
=

∂z

∂x

d x

d t
+

∂z

∂y

d y

d t

= (2 x)
∂z

∂x

(-2 sin t )

d x

d t

+ (-6 y)

∂z

∂y

(2 cos t )

d y

d t

Evaluate derivatives .

= -4 x sin t - 12 y cos t Simplify .

= -8 cos t sin t - 24 sin t cos t Substitute x = 2 cos t , y = 2 sin t .

= -16 sin 2 t . Simplify ; sin 2 t = 2 sin t cos t .
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Substituting  t =
π
4

 gives 
d z

d t t=π/4
= -16.

b. The parametric  equations  x = 2 cos t , y = 2 sin t , for 0 ≤ t ≤ 2 π, describe  a circle  C  of radius  2 in the xy-

plane.  Imagine  walking  on the surface  z = x2 - 3 y2 + 20 directly  above  the circle  C  consistent  with the positive  

(counterclockwise)  orientation  of C . Your path rises and falls as you walk (Figure  15.38 ); the rate of change  of 

your elevation  z  with respect  to t  is given by 
d z

d t
. For example,  when t =

π
4

, the corresponding  point  on the 

surface  is  2 , 2 , 16. At that point,  z  decreases  at a rate of -16 (by part (a)) as you walk on the surface  above  

C .

t

t = π  4

show labels

show grids

Figure 15.38

Related  Exercises  10, 12  ◆
The Chain Rule with Several Independent Variables  »

The ideas  behind  the Chain  Rule of Theorem  15.7 can be modified  to cover  a variety  of situations  in which  

functions  of several  variables  are composed  with one another.  For example,  suppose  z  depends  on two interme -

diate variables  x  and y , each of which  depends  on the independent  variables  s and t . Once again,  a tree diagram  

(Figure  15.39 ) helps  us organize  the relationships  among  variables.  The dependent  variable  z  now ultimately  

depends  on the two independent  variables  s and t , so it makes  sense  to ask about  the rates of change  of z  with 

respect  to either  s or t , which  are 
∂z

∂s
 and 

∂z

∂ t
, respectively.
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Figure 15.39

To compute  
∂z

∂s
, we note that there are two paths  in the tree (in red in Figure  15.39)  that connect  z  to s 

and contribute  to 
∂z

∂s
. Along  one path,  z  changes  with respect  to x  (with rate of change  

∂z

∂x
 and x  changes  with 

respect  to s (with rate of change  
∂x

∂s
). Along  the other  path,  z  changes  with respect  to y  (with rate of change  

∂z

∂y
) 

and y  changes  with respect  to s (with rate of change  
∂y

∂s
). We use a Chain  Rule calculation  along each path and 

combine  the results.  A similar  argument  leads to 
∂z

∂ t
 (Figure  15.40 ).

Figure 15.40

THEOREM  15.8 Chain  Rule (Two  Independent  Variables)

Let z  be a differentiable  function  of x  and y , where  x  and y  are differentiable  functions  of s and t . 

Then 

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
and

∂z

∂ t
=

∂z

∂x

∂x

∂ t
+

∂z

∂y

∂y

∂ t
.
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Quick Check 2   Suppose  w = f (x, y , z), where  x = g (s, t ), y = h(s, t ), and z = p(s, t ). Extend  Theorem  15.8 

to write  a formula  for 
∂w

∂ t
.  ◆

Answer  »

∂w

∂ t
=
∂w

∂x

∂x

∂ t
+
∂w

∂y

∂y

∂ t
+
∂w

∂z

∂z

∂ t

EXAMPLE  2 Chain Rule with two independent  variables

Let z = sin 2 x cos 3 y , where  x = s + t  and y = s - t . Evaluate  
∂z

∂s
 and 

∂z

∂ t
.

SOLUTION   »

The tree diagram  in Figure  15.39 gives the Chain  Rule formula  for 
∂z

∂s
: We form products  of the derivatives  along 

the branches  connecting  z  to s and add the results.  The partial  derivative  is 

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

= 2 cos 2 x cos 3 y

∂z

∂x

· 1︸
∂x

∂s

+ (-3 sin 2 x sin 3 y)

∂z

∂y

· 1︸
∂y

∂s

= 2 cos ( 2 (s + t )

x

) cos ( 3 (s - t )

y

) - 3 sin ( 2 (s + t )

x

) sin ( 3 (s - t )

y

) .

Following  the branches  of Figure  15.40 connecting  z  to t , we have 

∂z

∂ t
=

∂z

∂x

∂x

∂ t
+

∂z

∂y

∂y

∂ t

= 2 cos 2 x cos 3 y

∂z

∂x

· 1︸
∂x

∂t

+ (-3 sin 2 x sin 3 y)

∂z

∂y

·-1⏟
∂y

∂t

= 2 cos ( 2 (s + t )

x

) cos ( 3 (s - t )

y

) + 3 sin ( 2 (s + t )

x

) sin ( 3 (s - t )

y

) .

Related  Exercise  22  ◆
EXAMPLE  3 More variables

Let w  be a function  of x, y , and z, each of which  is a function  of s and t .

a. Draw a labeled  tree diagram  showing  the relationships  among  the variables.

b. Write the Chain  Rule formula  for 
∂w

∂s
.

SOLUTION   »

a. Because  w  is a function  of x, y , and z, the upper  branches  of the tree (Figure  15.41 ) are labeled  with the 
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partial  derivatives  wx , wy , and wz . Each of x, y , and z  is a function  of two variables,  so the lower  branches  of the 

tree also require  partial  derivative  labels.

Figure 15.41

b. Extending  Theorem  15.8,  we take the three paths  through  the tree that connect  w  to s (red branches  in 

Figure  15.41).  Multiplying  the derivatives  that appear  on each path and adding  gives the result  

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
.

Related  Exercises  25–26  ◆
Quick Check 3   If Q is a function  of w , x, y , and z, each of which  is a function  of r , s, and t , how many  

dependent  variables,  intermediate  variables,  and independent  variables  are there?   ◆
Answer  »

One dependent  variable,  four intermediate  variables,  and three independent  variables.

It is probably  clear  by now that we can create  a Chain  Rule for any set of relationships  among  variables.  

The key is to draw an accurate  tree diagram  and label  the branches  of the tree with the appropriate  derivatives.

EXAMPLE  4 A different  kind of tree

Let w  be a function  of z, where  z  is a function  of x  and y , and each of x  and y  is a function  of t . Draw a labeled  

tree diagram  and write  the Chain  Rule formula  for 
d w

d t
.

SOLUTION   »

The dependent  variable  w  is related  to the independent  variable  t  through  two paths  in the tree: w → z → x → t  

and w → z → y → t  (Figure  15.42 ). 
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Figure 15.42

At the top of the tree, w  is a function  of the single  variable  z, so the rate of change  is the ordinary  derivative  
d w

d z
. 

The tree below  z  looks  like Figure  15.36.  Multiplying  the derivatives  on each of the two branches  connecting  w  

to t , and adding  the results,  we have 

d w

d t
=

d w

d z

∂z

∂x

d x

d t
+

d w

d z

∂z

∂y

d y

d t
=

d w

d z

∂z

∂x

d x

d t
+

∂z

∂y

d y

d t
.

Related  Exercise  31  ◆
Implicit Differentiation  »

Using the Chain  Rule for partial  derivatives,  the technique  of implicit  differentiation  can be put in a larger  

perspective.  Recall  that if x  and y  are related  through  an implicit  relationship,  such as sin x y + π y2 = x, then 
d y

d x
 

is computed  using implicit  differentiation  (Section  3.8).  Another  way to compute  
d y

d x
 is to define  the function  

F (x, y) = sin x y + π y2 - x. Notice  that the original  equation  sin x y + π y2 = x  is F (x, y) = 0.

To find 
d y

d x
, we treat x  as the independent  variable  and differentiate  both sides of F (x, y(x)) = 0 with 

respect  to x. The derivative  of the right side is 0. On the left side,  we use the Chain  Rule of Theorem  15.7:  

∂F

∂x

d x

d x
1

+
∂F

∂y

d y

d x
= 0.

Noting  that 
d x

d x
= 1 and solving  for 

d y

d x
, we obtain  the following  theorem.
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THEOREM  15.9 Implicit  Differentiation

Let F  be differentiable  on its domain  and suppose  F (x, y) = 0 defines  y  as a differentiable  function  

of x. Provided  Fy ≠ 0, 

d y

d x
= -

Fx

Fy

.

Note  »

The  question  of whether  a relationship  of the  form  F (x , y ) = 0 or F (x , y , z) = 0 

determines  one  or more  functions  is addressed  by a theorem  of advanced  

calculus  called  the  Implicit  Function  Theorem.

EXAMPLE  5 Implicit  differentiation

Find 
d y

d x
 when F (x, y) = sin x y + π y2 - x = 0.

SOLUTION   »

Computing  the partial  derivatives  of F  with respect  to x  and y , we find that 

Fx = y cos x y - 1 and Fy = x cos x y + 2 π y .

Therefore,  

d y

d x
= -

Fx

Fy

= -
y cos x y - 1

x cos x y + 2 π y
.

As with many  implicit  differentiation  calculations,  the result  is left in terms of both x  and y . The same result  is 

obtained  using the methods  of Section  3.8.

Note  »

The  method  of Theorem  15.9  generalizes  to computing  
∂ z

∂x
 and  

∂ z

∂ y
 with  

functions  of the  form  F (x , y , z) = 0 (Exercise  56).

Related  Exercise  37  ◆

Quick Check 4   Use the method  of Example  5 to find 
d y

d x
 when F (x, y) = x2 + x y - y3 - 7 = 0. Compare  

your solution  to Example  3 in Section  3.8. Which  method  is easier?   ◆
Answer  »

d y

d x
=

2 x + y

3 y2 - x
; in this case,  using

d y

d x
= -

Fx

Fy

 is more efficient.

EXAMPLE  6 Fluid flow

A basin  of circulating  water  is represented  by the square  region  {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, where  x  is positive  

in the eastward  direction  and y  is positive  in the northward  direction.  The velocity  components  of the water  are 
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the east-west velocity u(x, y) = 2 sin πx cos πy and

the north-south velocity v(x, y) = -2 cos πx sin πy ;

these velocity  components  produce  the flow pattern  shown  in Figure  15.43 . The streamlines shown  in the 

figure  are the paths  followed  by small  parcels  of water.  The speed  of the water  at a point  (x, y) is given by the 

function  s(x, y) = u(x, y)2 + v(x, y)2 . Find 
∂s

∂x
 and 

∂s

∂y
, the rates of change  of the water  speed  in the x- and y-

directions,  respectively.

t

show

streamlines

path

velocities

show grids

0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8

1.

y

t = 0.1

Figure 15.43

SOLUTION   »

The dependent  variable  s depends  on the independent  variables  x  and y  through  the intermediate  variables  u 

and v  (Figure  15.44 ). 
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Figure 15.44

Theorem  15.8 applies  here in the form 

∂s

∂x
=

∂s

∂u

∂u

∂x
+

∂s

∂v

∂v

∂x
and

∂s

∂y
=

∂s

∂u

∂u

∂y
+

∂s

∂v

∂v

∂y
.

The derivatives  
∂s

∂u
 and 

∂s

∂v
 are easier  to find if we square  the speed  function  to obtain  s2 = u2 + v2 and then use 

implicit  differentiation.  To compute  
∂s

∂u
, we differentiate  both sides of s2 = u2 + v2 with respect  to u: 

2 s
∂s

∂u
= 2 u, which implies that

∂s

∂u
=

u

s
.

Similarly,  differentiating  s2 = u2 + v2 with respect  to v  gives 

2 s
∂s

∂v
= 2 v, which implies that

∂s

∂v
=

v

s
.

Now the Chain  Rule leads to 
∂s

∂x
:

∂s

∂x
=

∂s

∂u

∂u

∂x
+

∂s

∂v

∂v

∂x

=
u

s⏟
∂s

∂u

(2 π cos πx cos πy)

∂u

∂x

+
v

2⏟
∂s

∂v

(2 π sin πx sin πy)

∂v

∂x

=
2 π

s
(u cos πx cos πy + v sin πx sin πy).

A similar  calculation  shows  that 

∂s

∂y
= -

2 π
s

(u sin πx sin πy + v cos πx cos πy).

As a final  step,  you could  replace  s, u and v, by their  definitions  in terms  of x  and y .

Related  Exercises  41–42  ◆
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EXAMPLE  7 Second  derivatives

Let z = f (x, y) =
x

y
, where  x = s + t 2 and y = s2 - t . Compute  

∂2 z

∂s2
= zs s , 

∂2 z

∂ t ∂s
= zs t , and 

∂2 z

∂ t 2
= zt t , and express  

the results  in terms of s and t . We use subscripts  for partial  derivatives  in this example  to simplify  the notation.

SOLUTION   »

First,  we need some ground  rules.  In this example,  it is possible  to express  f  in terms  of s and t  by substituting,  

after which  the result  could  be differentiated  directly  to find the required  partial  derivatives.  Unfortunately,  this 

maneuver  is not always  possible  in practice  (see Exercises  72 and 73). Therefore,  to make this example  as useful  

as possible,  we develop  general  formulas  for the second  partial  derivatives  and make substitutions  only in the 

last step.

Figures  15.39 and 15.40 show the relationships  among  the variables,  and Example  2 demonstrates  the 

calculation  of the first partial  derivatives.  Throughout  these calculations,  it is important  to remember  the 

meaning  of differentiation  with respect  to s and t :

( )s = ( )x xs + ( )y ys and ( )t = ( )x xt + ( )y yt .

Let’s compute  the first partial  derivatives:  

zs = zx xs + zy ys and zt = zx xt + zy yt .

Differentiating  zs  with respect  to s, we have 

zs s = zx xs + zy yss
= (zx)s xs + zx xs s + zy s ys + zy ys s Product Rule (twice)

= (zx x xs + zx y ys

(zx )s

) xs + zx xs s + (zy x xs + zy y ys

zy s

) ys + zy ys s Differentiate zx and zy with respect to s.

= zx x xs
2 + 2 zx y xs ys + zy y ys

2 + zx xs s + zy ys s . Simplify with zx y = zy x .

At this point,  we substitute  

zx =
1

y
, zy = -

x

y2
, zx x = 0, zx y = -

1

y2
, zy y =

2 x

y3
, xs = 1, xs s = 0, ys = 2 s, and ys s = 2,

and simplify  to find that 

zs s =
2 s3 + 3 s t + 3 s2 t 2 + t 3

s2 - t 3
.

Differentiating  zs  with respect  to t , a similar  procedure  produces  zs t :

zs t = zx xs + zy yst
= (zx)t xs + zx xs t + zy t ys + zy ys t Product Rule (twice)

= (zx x xt + zx y yt

(zx )t

) xs + zx xs t + (zy x xt + zy y yt

zy t

) ys + zy ys t Differentiate zx and zy with respect to t .

= zx x xs xt + zx y xs yt + zx y xt ys + zy y ys yt + zx xs t + zy ys t . Simplify with zx y = zy x .

12 Chapter 15 •  Functions of Several Variables

Copyright © 2019 Pearson Education, Inc.



Substituting  in terms of s and t  with xs t = 0 and ys t = 0, we have 

zs t = -
3 s2 + t + 4 s3 t

s2 - t 3
.

An analogous  calculation  gives

zt t =
2 s 1 + s3
s2 - t 3

.

Related  Exercise  45 ◆
Exercises  »

Getting  Started   »

Practice  Exercises   »

9–18.  Chain  Rule with one independent  variable   Use Theorem  15.7 to find the following  derivatives.  

9.
d z

d t
, where  z = x sin y , x = t 2, and y = 4 t 3

10.
d z

d t
, where  z = x2 y - x y3, x = t 2, and y = t-2

11.
d w

d t
, where w = cos 2 x sin 3 y , x =

t

2
, and y = t 4

12.
d z

d t
, where  z = r 2 + s2 , r = cos 2 t , and s = sin 2 t

13.
d z

d t
, where  z = (x + 2 y)10, x = sin2 t , and y = (3 t + 4)5

14.
d z

d t
, where  z =

x20

y10
, x = tan-1 t , and y = ln t 2 + 1

15.
d w

d t
, where  w = x y sin z, x = t 2, y = 4 t 3, and z = t + 1

16.
d Q

d t
, where  Q = x2 + y2 + z2 , x = sin t , y = cos t , and z = cos t

17.
d V

d t
, where  V = x y z, x = et , y = 2 t + 3, and z = sin t

18.
d U

d t
, where U =

x y2

z8
, x = et , y = sin 3 t , and z = 4 t + 1

19–26. Chain  Rule with several  independent  variables   Find the following  derivatives.
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19. zs and zt , where  z = x2 sin y , x = s - t , and y = t 2

20. zs and zt , where  z = sin (2 x + y), x = s2 - t 2, and y = s 2 + t 2

21. zs  and zt , where  z = x y - x2 y , x = s + t , and y = s - t

22. zs  and zt , where  z = sin x cos 2 y , x = s + t , and y = s - t

23. zs  and zt , where  z = ex+y , x = s t , and y = s + t

24. zs  and zt , where  z = sin x y , x = s2 t , and y = (s + t )10

25. ws  and wt , where  w =
x - z

y + z
, x = s + t , y = s t , and z = s - t

26. wr , ws , and wt , where  w = x2 + y2 + z2 , x = s t , y = r s, and z = r t

27. Changing  cylinder   The volume  of a right circular  cylinder  with radius  r  and height  h is V = π r 2 h.

a. Assume  r  and h are functions  of t . Find V ' (t ).

b. Suppose  r = et  and h = e-2 t , for t ≥ 0. Use part (a) to find V ' (t ).

c. Does the volume  of the cylinder  in part (b) increase  or decrease  as t  increases?

28. Changing  pyramid   The volume  of a pyramid  with a square  base x  units  on a side and a height  of h 

is V =
1

3
x2 h.

a. Assume  x  and h are functions  of t . Find V ' (t ).

b. Suppose  x =
t

t + 1
 and h =

1

t + 1
, for t ≥ 0. Use part (a) to find V ' (t ).

c. Does the volume  of the pyramid  in part (b) increase  or decrease  as t  increases?

29–30.  Derivative  practice  two ways   Find the indicated  derivative  in two ways:

a. Replace  x and y to write  z as a function  of t  and differentiate.

b. Use the Chain  Rule.

29. z ' (t ), where  z =
1

x
+

1

y
, x = t 2 + 2 t , and y = t 3 - 2

30 z ' (t ), where  z = ln (x + y), x = t et , and y = et

31–34.  Making  trees   Use a tree diagram  to write  the required  Chain  Rule formula.

31. w  is a function  of z, where  z  is a function  of p, q, and r , each of which  is a function  of t . Find 
d w

d t
.

32. w = f (x, y , z), where  x = g (t ), y = h(s, t ), z = p(r , s, t ). Find 
∂w

∂ t
.

33. u = f (v), where  v = g (w , x, y), w = h(z), x = p(t , z), y = q(t , z). Find 
∂u

∂z
.
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34. u = f (v, w , x), where  v = g (r , s, t ), w = h(r , s, t ), x = p(r , s, t ), r = F (z). Find 
∂u

∂ z
.

35–40.  Implicit  differentiation   Use Theorem  15.9 to evaluate  
d y

d x
. Assume  each equation  implicitly  

defines  y as a differentiable  function  of x.

35. x2 - 2 y2 - 1 = 0

36. x3 + 3 x y2 - y5 = 0

37. 2 sin x y = 1

38. y ex y - 2 = 0

39. x2 + 2 x y + y4 = 3

40. y ln x2 + y2 + 4 = 3

41–42.  Fluid  flow   The x- and y-components  of a fluid moving  in two dimensions  are given by the 

following  functions  u and v. The speed of the fluid at (x, y) is s(x, y) = u(x, y)2 + v(x, y)2 . Use the Chain  

Rule to find 
∂s

∂x
 and 

∂s

∂y
.

41. u(x, y) = 2 y  and v(x, y) = -2 x; x ≥ 0 and y ≥ 0

42. u(x, y) = x (1 - x) (1 - 2 y) and v(x, y) = y (y - 1) (1 - 2 x); 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

43–48.  Second  derivatives   For the following  sets of variables,  find all the relevant  second  derivatives.  In 

all cases,  first find general  expressions  for the second  derivatives  and then substitute  variables  at the last 

step.

43. f (x, y) = x2 y , where  x = s + t  and y = s - t

44. f (x, y) = x2 y - x y2, where  x = s t  and y =
s

t

45. f (x, y) =
y

x
, where  x = s2 + t 2 and y = s2 - t 2

46. f (x, y) = ex-y , where  x = s2 and y = 3 t 2

47. f (x, y , z) = x y + x z - y z, where  x = s2 - 2 s, y =
2

s2
, and z = 3 s2 - 2

48. f (x, y) = x y , where  x = s + 2 t - u and y = s + 2 t + u

49. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.  Assume  all partial  derivatives  exist.

a. If z = (x + y) sin x y , where  x  and y  are functions  of s, then 
∂z

∂s
=

d z

d x

d x

d s
.
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b. Given that w = f (x(s, t ), y(s, t ), z(s, t )), the rate of change  of w  with respect  to t  is 
d w

d t
.

50–54.  Derivative  practice   Find the indicated  derivative  for the following  functions.

50.
∂z

∂p
, where  z =

x

y
, x = p + q, and y = p - q

51.
d w

d t
, where  w = x y z, x = 2 t 4, y = 3 t-1, and z = 4 t-3

52.
∂w

∂x
, where  w = cos z - cos x cos y + sin x sin y , and z = x + y

53.
∂z

∂x
, where  

1

x
+

1

y
+

1

z
= 1

54.
∂z

∂x
, where  x y - z = 1

55. Change  on a line   Suppose  w = f (x, y , z) and ℓ is the line r(t ) = 〈a t , b t , c t〉, for -∞ < t <∞.

a. Find w ' (t ) on ℓ (in terms  of a, b, c, wx , wy , and wz ).

b. Apply  part (a) to find w ' (t ) when f (x, y , z) = x y z.

c. Apply  part (a) to find w ' (t ) when f (x, y , z) = x2 + y2 + z2 .

d. For a general  twice  differentiable  function  w = f (x, y , z), find w '' (t ).

56. Implicit  differentiation  rule with three  variables   Assume  F (x, y , z(x, y)) = 0 implicitly  defines  z  as 

a differentiable  function  of x  and y . Extend  Theorem  15.9 to show that 

∂z

∂x
= -

Fx

Fz

and
∂z

∂y
= -

Fy

Fz

57–59.  Implicit  differentiation  with three  variables   Use the result  of Exercise  56 to evaluate  
∂z

∂x
 and 

∂z

∂y
 

for the following  relations.

57. x y + x z + y z = 3

58. x2 + 2 y2 - 3 z2 = 1

59. x y z + x + y - z = 0

60. More than one way   Let ex y z = 2. Find zx  and zy  in three ways (and check  for agreement).

a. Use the result  of Exercise  56.

b. Take logarithms  of both sides and differentiate  x y z = ln 2.

c. Solve for z  and differentiate  z =
ln 2

x y
.
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61–64.  Walking  on a surface   Consider  the following  surfaces  specified  in the form z = f (x, y) and the 

oriented  curve  C  in the xy-plane.

a. In each case,  find z ' (t ).

b. Imagine  that you are walking  on the surface  directly  above  the curve  C  in the direction  of positive  

orientation.  Find the values  of t  for which  you are walking  uphill  (that  is, z is increasing).

61. z = x2 + 4 y2 + 1, C : x = cos t , y = sin t ; 0 ≤ t ≤ 2 π
62. z = 4 x2 - y2 + 1, C : x = cos t , y = sin t ; 0 ≤ t ≤ 2 π

63. z = 1 - x2 - y2 , C : x = e-t , y = e-t ; t ≥ 1

2
ln 2

64. z = 2 x2 + y2 + 1, C : x = 1 + cos t , y = sin t ; 0 ≤ t ≤ 2 π
65. Conservation  of energy   A projectile  with mass m is launched  into the air on a parabolic  trajectory.  

For t ≥ 0, its horizontal  and vertical  coordinates  are x(t ) = u0 t  and y(t ) = -
1

2
g t 2 + v0 t , respectively,  

where  u0 is the initial  horizontal  velocity,  v0 is the initial  vertical  velocity,  and g  is the acceleration  

due to gravity.  Recalling  that u(t ) = x ' (t ) and v(t ) = y ' (t ) are the components  of the velocity,  the 

energy  of the projectile  (kinetic  plus potential)  is 

E (t ) =
1

2
m u2 + v2 + m g y

 Use the Chain  Rule to compute  E ' (t ) and show that E ' (t ) = 0, for all t ≥ 0. Interpret  the result.

66. Utility  functions  in economics   Economists  use utility  functions  to describe  consumers’  relative  

preference  for two or more commodities  (for example,  vanilla  vs. chocolate  ice cream  or leisure  time 

vs. material  goods).  The Cobb-Douglas  family  of utility  functions  has the form U (x, y) = xa y1-a , 

where  x  and y  are the amounts  of two commodities  and 0 < a < 1 is a parameter.  Level  curves  on 

which  the utility  function  is constant  are called  indifference  curves ; the preference  is the same for all 

combinations  of x  and y  along an indifference  curve  (see figure).

a. The marginal  utilities  of the commodities  x  and y  are defined  to be 
∂U

∂x
 and 

∂U

∂y
, respectively.  

Compute  the marginal  utilities  for the utility  function  U (x, y) = xa y1-a .

b. The marginal  rate of substitution  (MRS)  is the slope of the indifference  curve  at the point  (x, y). 

Use the Chain  Rule to show that for U (x, y) = xa y1-a , the MRS is -
a

1 - a

y

x
.
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c. Find the MRS for the utility  function  U (x, y) = x0.4 y0.6  at (x, y) = (8, 12).

67. Constant  volume  tori   The volume  of a solid torus is given by V =
π2

4
(R + r) (R - r)2, where  r  and R 

are the inner  and outer  radii  and R > r  (see figure).

a. If R and r  increase  at the same rate,  does the volume  of the torus increase,  decrease,  or remain  

constant?

b. If R and r  decrease  at the same rate,  does the volume  of the torus increase,  decrease,  or remain  

constant?

68. Body surface  area   One of several  empirical  formulas  that relates  the surface  area S of a human  

body to the height  h and weight  w  of the body is the Mosteller  formula  S(h, w) =
1

60
h w , where  h 

is measured  in cm, w  is measured  in kg, and S is measured  in square  meters.  Suppose  h and w  are 

functions  of t .

a. Find S ' (t ).

b. Show that the condition  that the surface  area remains  constant  as h and w  change  is 

w h ' (t ) + h w ' (t ) = 0.

c. Show that part (b) implies  that for constant  surface  area,  h and w  must  be inversely  related;  that 

is, h =
C

w
, where  C  is a constant.

69. The Ideal  Gas Law   The pressure,  temperature,  and volume  of an ideal  gas are related  by P V = k T , 

where  k > 0 is a constant.  Any two of the variables  may be considered  independent,  which  

determines  the dependent  variable.

a. Use implicit  differentiation  to compute  the partial  derivatives  
∂P

∂V
, 
∂T

∂P
, and 

∂V

∂T
.

b. Show that 
∂P

∂V

∂T

∂P

∂V

∂T
= -1. (See Exercise  75 for a generalization.)

70. Variable  density   The density  of a thin circular  plate of radius  2 is given by ρ(x, y) = 4 + x y . The 

edge of the plate is described  by the parametric  equations  x = 2 cos t , y = 2 sin t , for 0 ≤ t ≤ 2 π.

a. Find the rate of change  of the density  with respect  to t  on the edge of the plate.

b. At what point(s)  on the edge of the plate is the density  a maximum?

T 71. Spiral  through  a domain   Suppose  you follow  the helical  path C : x = cos t , y = sin t , z = t , for t ≥ 0, 

through  the domain  of the function  w = f (x, y , z) =
x y z

z2 + 1
.

a. Find w ' (t ) along C .
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b. Estimate  the point  (x, y , z) on C  at which  w  has its maximum  value.

Explorations  and Challenges   »

72. Change  of coordinates   Recall  that Cartesian  and polar  coordinates  are related  through  the 

transformation  equations  

 x = r cos θ
y = r sin θ or

r 2 = x2 + y2

tan θ = y

x

a. Evaluate  the partial  derivatives  xr , yr , xθ , and yθ .

b. Evaluate  the partial  derivatives  rx , ry , θx , and θy .

c. For a function  z = f (x, y), find zr  and zθ , where  x  and y  are expressed  in terms of r  and θ.

d. For a function  z = g (r , θ), find zx  and zy , where  r  and θ are expressed  in terms  of x  and y .

e. Show that 
∂z

∂x

2

+
∂z

∂y

2

=
∂z

∂r

2

+
1

r 2

∂z

∂θ
2

.

73. Change  of coordinates  continued   An important  derivative  operation  in many  applications  is called  

the Laplacian;  in Cartesian  coordinates,  for z = f (x, y), the Laplacian  is zx x + zy y . Determine  the 

Laplacian  in polar  coordinates  using  the following  steps.

a. Begin with z = g (r , θ) and write  zx  and zy  in terms  of polar  coordinates  (see Exercise  72).

b. Use the Chain  Rule to find zx x =
∂
∂x

(zx). There  should  be two major  terms,  which,  when 

expanded  and simplified,  result  in five terms.

c. Use the Chain  Rule to find zy y =
∂
∂y

zy . There  should  be two major  terms,  which,  when 

expanded  and simplified,  result  in five terms.

d. Combine  parts  (b) and (c) to show that 

zx x + zy y = zr r +
1

r
zr +

1

r 2
zθθ .

74. Geometry  of implicit  differentiation   Suppose  x  and y  are related  by the equation  F (x, y) = 0. 

Interpret  the solution  of this equation  as the set of points  (x, y) that lie on the intersection  of the 

surface  z = F (x, y) with the xy-plane  (z = 0).

a. Make a sketch  of a surface  and its intersection  with the xy-plane.  Give a geometric  

interpretation  of the result  that 
d y

d x
= -

Fx

Fy

.

b. Explain  geometrically  what  happens  at points  where  Fy = 0.

75. General  three-variable  relationship   In the implicit  relationship  F (x, y , z) = 0, any two of the 

variables  may be considered  independent,  which  then determines  the dependent  variable.  To avoid  

confusion,  we may use a subscript  to indicate  which  variable  is held fixed in a derivative  calculation;  

for example  
∂z

∂x y

 means  that y  is held fixed in taking  the partial  derivative  of z  with respect  to x. (In 

this context,  the subscript  does not mean  a derivative.)
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a. Differentiate  F (x, y , z) = 0 with respect  to x  holding  y  fixed to show that 
∂z

∂x y

= -
Fx

Fz

.

b. As in part (a), find 
∂y

∂z x

 and 
∂x

∂y z

.

c. Show that 
∂z

∂x y

∂y

∂z x

∂x

∂y z

= -1.

d. Find the relationship  analogous  to part (c) for the case F (w , x, y , z) = 0.

76. Second  derivative   Let f (x, y) = 0 define  y  as a twice  differentiable  function  of x.

a. Show that y '' (x) = -
fx x fy

2 - 2 fx fy fx y + fy y fx
2

fy
3

.

b. Verify  part (a) using  the function  f (x, y) = x y - 1.

77. Subtleties  of the Chain  Rule   Let w = f (x, y , z) = 2 x + 3 y + 4 z, which  is defined  for all (x, y , z) in 

ℝ3. Suppose  we are interested  in the partial  derivative  wx  on a subset  of ℝ3, such as the plane  P  

given by z = 4 x - 2 y . The point  to be made  is that the result  is not unique  unless  we specify  which  

variables  are considered  independent.

a. We could  proceed  as follows.  On the plane  P , consider  x  and y  as the independent  variables,  

which  means  z  depends  on x  and y , so we write  w = f (x, y , z(x, y)). Differentiate  with respect  to 

x  holding  y  fixed to show that 
∂w

∂x y

= 18, where  the subscript  y  indicates  that y  is held fixed.

b. Alternatively,  on the plane P , we could  consider  x  and z  as the independent  variables,  which  

means  y  depends  on x  and z, so we write  w = f (x, y(x, z), z) and differentiate  with respect  to x  

holding  z  fixed.  Show that 
∂w

∂x z

= 8, where  the subscript  z  indicates  that z  is held fixed.

c. Make a sketch  of the plane  z = 4 x - 2 y  and interpret  the results  of parts  (a) and (b) 

geometrically.

d. Repeat  the arguments  of parts  (a) and (b) to find 
∂w

∂y x

, 
∂w

∂y z

, 
∂w

∂z x

, and 
∂w

∂z y

.
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