
15.3 Partial Derivatives

The derivative  of a function  of one variable,  y = f (x), measures  the rate of change  of y  with respect  to x, and it 

gives slopes  of tangent  lines.  The analogous  idea for functions  of several  variables  presents  a new twist:  Deriva -

tives may be defined  with respect  to any of the independent  variables.  For example,  we can compute  the 

derivative  of f (x, y) with respect  to x  or y . The resulting  derivatives  are called  partial  derivatives ; they still 

represent  rates of change  and they are associated  with slopes  of tangents.  Therefore,  much  of what you have 

learned  about  derivatives  applies  to functions  of several  variables.  However,  much  is also different.

Derivatives with Two Variables  »

Consider  a function  f  defined  on a domain  D  in the xy-plane.  Suppose  f  represents  the elevation  of the land 

(above  sea level)  over D. Imagine  that you are on the surface  z = f (x, y) at the point  (a, b, f (a, b)) and you are 

asked to determine  the slope of the surface  where  you are standing.  Your answer  should  be, it depends!

Figure  15.30a  shows  a function  that resembles  the landscape  in Figure  15.30b . Suppose  you are 

standing  at the point  P(0, 0, f (0, 0)), which  lies on the pass or the saddle.  The surface  behaves  differently,  

depending  on the direction  in which  you walk.  If you walk east (positive  x-direction),  the elevation  increases  

and your path takes  you upward  on the surface.  If you walk north  (positive  y-direction),  the elevation  decreases  

and your path takes  you downward  on the surface.  In fact,  in every direction  you walk from the point  P , the 

function  values  change  at different  rates.  So how should  the slope or the rate of change  at a given point  be 

defined?

Figure 15.30

The answer  to this question  involves  partial  derivatives , which  arise when we hold all but one indepen -

dent variable  fixed and then compute  an ordinary  derivative  with respect  to the remaining  variable.  Suppose  we 

move along the surface  z = f (x, y), starting  at the point  (a, b, f (a, b)) in such a way that y = b is fixed and only x  

varies.  The resulting  path is a curve  (a trace)  on the surface  that varies  in the x-direction  (Figure  15.31 ). This 

curve is the intersection  of the surface  with the vertical  plane  y = b; it is described  by z = f (x, b), which  is a 

function  of the single  variable  x. We know how to compute  the slope of this curve:  It is the ordinary  derivative  of 

f (x, b) with respect  to x. This derivative  is called  the partial  derivative  of f  with respect  to x, denoted  
∂ f

∂x
 or fx . 

When evaluated  at (a, b) its value is defined  by the limit  

fx(a, b) = lim
h→0

f (a + h, b) - f (a, b)

h
,
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provided  this limit  exists.  Notice  that the y-coordinate  is fixed at y = b in this limit.  If we replace  (a, b) by the 

variable  point (x, y), then fx  becomes  a function  of x  and y .

a

h

b

show y = b

show surface

show grids

Figure 15.31

In a similar  way,  we can move along the surface  z = f (x, y) from the point  (a, b, f (a, b)) in such a way 

that x = a is fixed and only y  varies.  Now,  the result  is a trace described  by z = f (a, y), which  is the intersection  

of the surface  and the plane x = a (Figure  15.32 ). The slope of this curve  at (a, b) is given by the ordinary  

derivative  of f (a, y) with respect  to y . This derivative  is called  the partial  derivative  of f  with respect  to y , 

denoted  
∂ f

∂y
 or fy . When  evaluated  at (a, b), it is defined  by the limit  

fy (a, b) = lim
h→0

f (a, b + h) - f (a, b)

h
,

provided  this limit  exists.  If we replace  (a, b) by the variable  point  (x, y), then fy  becomes  a function  of x  and y .
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show surface

show grids

Figure 15.32

DEFINITION Partial  Derivatives

The partial  derivative  of f  with respect  to x  at the point  (a, b) is 

fx(a, b) = lim
h→0

f (a + h, b) - f (a, b)

h
.

The partial  derivative  of f  with respect  to y  at the point  (a, b) is 

fy (a, b) = lim
h→0

f (a, b + h) - f (a, b)

h
,

provided  these limits  exist.

Notation

The partial  derivatives  evaluated  at a point  (a, b) are denoted  in any of the following  ways:  

∂ f

∂x
(a, b) =

∂ f

∂x (a,b)

= fx(a, b) and
∂ f

∂y
(a, b) =

∂ f

∂y (a,b)

= fy (a, b).
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Notice  that the d  in the ordinary  derivative  
d f

d x
 has been replaced  by ∂ in the partial  derivatives  

∂ f

∂x
 and 

∂ f

∂y
. 

The notation  
∂
∂x

 is an instruction  or operator:  It says,  “take the partial  derivative  with respect  to x  of the func-

tion that follows.”

Note  »

Recall  that  f ' is a function,  while  f ' (a) is the  value  of the  derivative  at x = a . In 

the  same  way,  fx  and  fy  are  functions  of x  and  y , while  fx (a , b) and  fy (a , b) are  

their  values  at (a , b).

Calculating  Partial  Derivatives

We begin  by calculating  partial  derivatives  using  the limit  definition.  The procedure  in Example  1 should  look 

familiar.  It echoes  the method  used in Chapter  3 when we first introduced  ordinary  derivatives.

EXAMPLE  1 Partial  derivatives  from the definition

Suppose  f (x, y) = x2 y . Use the limit  definition  of partial  derivatives  to compute  fx(x, y) and fy (x, y).

SOLUTION   »

We compute  the partial  derivatives  at an arbitrary  point  (x, y) in the domain.  The partial  derivative  with respect  

to x  is 

fx(x, y) = lim
x→0

f (x + h, y) - f (x, y)

h
Definition of fx at (x, y)

= lim
x→0

(x + h)2 y - x2 y

h
Substitute for f (x + h, y) and f (x, y).

= lim
h→0

x2 + 2 x h + h2 - x2 y

h
Factor and expand .

= lim
h→0

(2 x + h) y Simplify and cancel h.

= 2 x y . Evaluate limit.

In a similar  way,  the partial  derivative  with respect  to y  is 

fy (x, y) = lim
x→0

f (x, y + h) - f (x, y)

h
Definition of fy at (x, y)

= lim
h→0

x2(y + h) - x2 y

h
Substitute for f (x, y + h) and f (x, y).

= lim
h→0

x2(y + h - y)

h
Factor .

= x2. Simplify and evaluate limit.

Related  Exercise  11  ◆
A careful  examination  of Example  1 reveals  a shortcut  for evaluating  partial  derivatives.  To compute  the 

partial  derivative  of f  with respect  to x, we treat y  as a constant  and take an ordinary  derivative  with respect  to x:
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∂
∂x

x2 y = y
∂
∂x

x2
2 x

= 2 x y . Treat y as a constant .

Similarly,  we treat x  (and therefore  x2) as a constant  to evaluate  the partial  derivative  of f  with respect  to y : 

∂
∂y

x2 y = x2
∂
∂y

(y)

1

= x2. Treat x as a constant .

The next two examples  illustrate  the process.

EXAMPLE  2 Partial  derivatives

Let f (x, y) = x3 - y2 + 4.

a. Compute  
∂ f

∂x
 and 

∂ f

∂y
.

b. Evaluate  each derivative  at (2, -4).

SOLUTION   »

a. We compute  the partial  derivative  with respect  to x  assuming  y  is a constant;  the Power  Rule gives 

∂ f

∂x
=

∂
∂x

x3

variable

- y2 + 4

constant with

respect to x

= 3 x2 + 0 = 3 x2.

The partial  derivative  with respect  to y  is computed  by treating  x  as a constant;  using the Power  Rule gives 

∂ f

∂y
=

∂
∂y

x3

constant with

repsect to y

- y2

variable

+ 4
constant

= -2 y .

b. It follows  that fx(2, -4) = 3 x2
(2,-4)

= 12 and fy (2, -4) = (-2 y)
(2,-4)

= 8. 

Related  Exercise  16  ◆
Quick Check 1   Compute  fx  and fy  for f (x, y) = 2 x y .  ◆
Answer  »

fx = 2 y ; fy = 2 x

EXAMPLE  3 Partial  derivatives

Compute  the partial  derivatives  of the following  functions.

a. f (x, y) = sin x y
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b. g (x, y) = x2 ex y

SOLUTION   »

a. Treating  y  as a constant  and differentiating  with respect  to x, we have 

∂ f

∂x
=

∂
∂x

(sin x y) = y cos x y .

Note  »

Holding  x  fixed and differentiating  with respect  to y , we have 

∂ f

∂y
=

∂
∂y

(sin x y) = x cos x y .

b. To compute  the partial  derivative  with respect  to x, we call on the Product  Rule.  Holding  y  fixed,  we have 

∂g

∂x
=

∂
∂x

x2 ex y 

=
∂
∂x

x2 ex y + x2
∂
∂x

(ex y ) Product Rule

= 2 x ex y + x2 y ex y Evaluate partial derivatives .

= x ex y (2 + x y). Simplify .

Treating  x  as a constant,  the partial  derivative  with respect  to y  is 

∂g

∂y
=

∂
∂y

x2 ex y  = x2
∂
∂y

(ex y )

x ex y

= x3 ex y .

Note  »

Because  x  and  y  are  independent variables,  

∂
∂x

(y ) = 0 and
∂
∂ y

(x) = 0.

Related  Exercises  17, 21  ◆
Higher-Order Partial Derivatives  »

Just as we have higher-order  derivatives  of functions  of one variable,  we also have higher-order  partial  deriva -

tives.  For example,  given a function  f  and its partial  derivative  fx , we can take the derivative  of fx  with respect  to 

x  or with respect  to y , which  accounts  for two of the four possible  second-order  partial  derivatives . Table  15.3 

summarizes  the notation  for second  partial  derivatives.
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Table 15.3

Notation 1 Notation 2 What we say …

∂
∂x

∂ f

∂x
=
∂2 f

∂x2

(fx)x = fx x d squared f dx squared or f -x-x

∂
∂y

∂ f

∂y
=
∂2 f

∂y2
fy y

= fy y d squared f dy squared or f -y-y

∂
∂x

∂ f

∂y
=

∂2 f

∂x ∂y
fy x

= fy x f -y-x

∂
∂y

∂ f

∂x
=

∂2 f

∂y ∂x
(fx)y = fx y f -x-y

The order  of differentiation  can make a difference  in the mixed  partial  derivatives  fx y  and fy x . So, it is 

important  to use the correct  notation  to reflect  the order  in which  derivatives  are taken.  For example,  the 

notations  
∂2 f

∂x ∂y
 and fy x  both mean  

∂
∂x

∂ f

∂y
; that is, differentiate  first with respect  to y , then with respect  to x.

Quick Check 2   Which  of the following  expressions  are equivalent  to each other:  (a) fx y , (b) fy x , or (c) 

∂2 f

∂y ∂x
? Write  

∂2 f

∂p ∂q
 in subscript  notation.   ◆

Answer  »

EXAMPLE  4 Second  partial  derivatives

Find the four second  partial  derivatives  of f (x, y) = 3 x4 y - 2 x y + 5 x y3.

SOLUTION   »

First,  we compute  

∂ f

∂x
=

∂
∂x

3 x4 y - 2 x y + 5 x y3 = 12 x3 y - 2 y + 5 y3

and 

∂ f

∂y
=

∂
∂y

3 x4 y - 2 x y + 5 x y3 = 3 x4 - 2 x + 15 x y2.

For the second  partial  derivatives,  we have 
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∂2 f

∂x2
=

∂
∂x

∂ f

∂x
=

∂
∂x

12 x3 y - 2 y + 5 y3 = 36 x2 y ,

∂2 f

∂y2
=

∂
∂y

∂ f

∂y
=

∂
∂y

3 x4 - 2 x + 15 x y2 = 30 x y ,

∂2 f

∂x ∂y
=

∂
∂x

∂ f

∂y
=

∂
∂x

3 x4 - 2 x + 15 x y2 = 12 x3 - 2 + 15 y2, and

∂2 f

∂y ∂x
=

∂
∂y

∂ f

∂x
=

∂
∂y

12 x3 y - 2 y + 5 y3 = 12 x3 - 2 + 15 y2.

Related  Exercises  39–40   ◆
Quick Check 3   Compute  fx x x  and fx x y  for f (x, y) = x3 y .  ◆
Answer  »

fx x x = 6 y ; fx x y = 6 x

Equality  of Mixed Partial  Derivatives

Notice  that the two mixed  partial  derivatives  in Example  4 are equal;  that is, fx y = fy x . It turns  out that most  of 

the functions  we encounter  in this book have this property.  Sufficient  conditions  for equality  of mixed  partial  

derivatives  are given in a theorem  attributed  to the French  mathematician  Alexis  Clairaut  (1713–1765).  The 

proof is found  in advanced  texts.

THEOREM  15.4 (Clairaut)  Equality  of Mixed  Partial  Derivatives

Assume  f  is defined  on an open set D  of ℝ2, and fx y  and fy x  are continuous  throughout  D. Then 

fx y = fy x  at all points  of D.

Assuming  sufficient  continuity,  Theorem  15.4 can be extended  to higher  derivatives  of f . For example,  

fx y x = fx x y = fy x x .

Functions of Three Variables  »

Everything  we learned  about  partial  derivatives  of functions  with two variables  carries  over to functions  of three 

or more variables,  as illustrated  in Example  5.

EXAMPLE  5 Partial  derivatives  with more than two variables

Find fx , fy , and fz  when f (x, y , z) = e-x y cos z.

SOLUTION   »

To find fx , we treat y  and z  as constants  and differentiate  with respect  to x: 

∂ f

∂x
=

∂
∂x

e-x y

y is

constant

· cos z
constant

= -y e-x y cos z.

8 Chapter 15 •  Functions of Several Variables

Copyright © 2019 Pearson Education, Inc.



Holding  x  and z  constant  and differentiating  with respect  to y , we have 

∂ f

∂y
=

∂
∂y

e-x y

x is

constant

· cos z
constant

= -x e-x y cos z.

To find fz , we hold x  and y  constant  and differentiate  with respect  to z:

∂ f

∂z
=

∂
∂z

e-x y

constant

cos z = -e-x y sin z

Related  Exercises  55–56  ◆
Quick Check 4   Compute  fx z  and fz z  for f (x, y , z) = x y z - x2 z + y z2.  ◆
Answer  »

fx z = y - 2 x; fz z = 2 y

Applications  of Partial  Derivatives

When functions  are used in realistic  applications  (for example,  to describe  velocity,  pressure,  investment  fund 

balance,  or population),  they often involve  more than one independent  variable.  For this reason,  partial  deriva -

tives appear  frequently  in mathematical  modeling.

EXAMPLE  6 Ideal Gas Law

The pressure  P , volume  V , and temperature  T  of an ideal  gas are related  by the equation P V = k T , where  k > 0 

is a constant  depending  on the amount  of gas.

a. Determine  the rate of change  of the pressure  with respect  to the volume  at constant  temperature.  Inter-

pret the result.

b. Determine  the rate of change  of the pressure  with respect  to the temperature  at constant  volume.  Inter-

pret the result.

c. Explain  these results  using level  curves.

SOLUTION   »

Expressing  the pressure  as a function  of volume  and temperature,  we have P = k
T

V
.

a. We find the partial  derivative  
∂P

∂V
 by holding  T  constant  and differentiating  P  with respect  to V : 

∂P

∂V
=

∂
∂V

k
T

V
= k T

∂
∂V

V -1 = -
k T

V 2
.

Note  »

Recognizing  that P , V , and T  are always  positive,  we see that 
∂P

∂V
< 0, which  means  that the pressure  is a 

decreasing  function  of volume  at a constant  temperature.
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Note  »

In the  Ideal  Gas  Law,  temperature  is a positive  variable  because  it is measured  

in kelvins.

b. The partial  derivative  
∂P

∂T
 is found  by holding  V  constant  and differentiating  P  with respect  to T : 

∂P

∂T
=

∂
∂T

k
T

V
=

k

V
.

In this case 
∂P

∂T
> 0, which  says that the pressure  is an increasing  function  of temperature  at constant  volume.

c. The level  curves  (Section  15.1)  of the pressure  function  are curves  in the VT-plane  that satisfy  k
T

V
= P0, 

where  P0 is a constant.  Solving  for T , the level  curves  are given by T =
1

k
P0 V . Because  

P0

k
 is a positive  con-

stant,  the level  curves  are lines in the first quadrant  passing  through  the origin  (Figure  15.33 ) with slope 
P0

k
. 

The fact that 
∂P

∂V
< 0 (from  part (a)),  means  that if we hold T > 0 fixed and move in the direction  of increasing  V  

on a horizontal line,  we cross  level  curves  corresponding  to decreasing  pressures.  Similarly,  
∂P

∂T
> 0 (from  part 

(b)) means  that if we hold V > 0 fixed and move in the direction  of increasing  T  on a vertical line, we cross  level  

curves  corresponding  to increasing  pressures.

Figure 15.33

Related  Exercise  69  ◆
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Quick Check 5   Explain  why,  in Figure  15.33,  the slopes  of the level  curves  increase  as the pressure  

increases.   ◆
Answer  »

The equations  of the level  curves  are T =
1

k
P0 V . As the pressure  P0 increases,  the slopes  of 

theses  lines increase.  

Differentiability  »

We close this section  with a technical  matter  that bears  on the remainder  of the chapter.  Although  we know how 

to compute  partial  derivatives  of a function  of several  variables,  we have not said what it means  for such a 

function  to be differentiable at a point.  It is tempting  to conclude  that if the partial  derivatives  fx  and fy  exist  at a 

point,  then f  is differentiable  there.  However,  it is not so simple.

Recall  that a function  f  of one variable  is differentiable  at x = a provided  the limit  

f ' (a) = lim
Δx→0

f (a + Δx) - f (a)

Δx

exists.  If f  is differentiable  at a, it means  that the curve  is smooth  at the point  (a, f (a)) (no jumps,  corners,  or 

cusps);  furthermore,  the curve  has a unique  tangent  line at that point  with slope f ' (a). Differentiability  for a 

function  of several  variables  should  carry  the same properties:  The surface  should  be smooth  at the point  in 

question  and something  analogous  to a unique  tangent  line should  exist  at the point.

Staying  with the one-variable  case,  we define  the quantity  

ε = f (a + Δx) - f (a)

Δx

slope of secant line

- f ' (a)

slope of

tangent line

,

where  ε is viewed  as a function  of Δx. Notice  that ε is the difference  between  the slopes  of secant  lines and the 

slope of the tangent  line at the point  (a, f (a)). If f  is differentiable  at a, then this difference  approaches  zero as 

Δx → 0; therefore,  lim
Δx→0

ε = 0. Multiplying  both sides of the definition  of ε by Δx  gives 

ε Δx = f (a + Δx) - f (a) - f ' (a) Δx.

Rearranging,  we have the change  in the function  y = f (x): 

Δy = f (a + Δx) - f (a) = f ' (a) Δx + ε
ε → 0

as Δx → 0

Δx.

This expression  says that in the one-variable  case,  if f  is differentiable  at a, then the change  in f  between  

a and a nearby  point  a + Δx  is represented  by f ' (a) Δx  plus a quantity  ε Δx, where  lim
Δx→0

ε = 0.

Note  »

Notice  that  f ' (a) Δx  is the  approximate  change  in the  function  given  by a 

linear  approximation.
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The analogous  requirement  with several  variables  is the definition  of differentiability  for functions  of two 

(or more)  variables.

DEFINITION Differentiability

The function  z = f (x, y) is differentiable  at (a, b) provided  fx(a, b) and fy (a, b) exist  and the 

change  Δz = f (a + Δx, b + Δy) - f (a, b) equals  

Δz = fx(a, b) Δx + fy (a, b) Δy + ε1 Δx + ε2 Δy ,

where  for fixed a and b, ε1 and ε2 are functions  that depend  only on Δx  and Δy , with 

(ε1, ε2)→ (0, 0) as (Δx, Δy)→ (0, 0). A function  is differentiable on an open region  R if it is 

differentiable  at every point  of R.

Several  observations  are needed  here.  First,  the definition  extends  to functions  of more than two vari-

ables.  Second,  we show how differentiability  is related  to linear  approximation  and the existence  of a tangent  

plane in Section  15.6.  Finally,  the conditions  of the definition  are generally  difficult  to verify.  The following  

theorem  may be useful  in checking  differentiability.

THEOREM  15.5 Conditions  for Differentiability

Suppose  the function  f  has partial  derivatives  fx  and fy  defined  on an open set containing  (a, b), 

with fx  and fy  continuous  at (a, b). Then f  is differentiable  at (a, b).

As shown  in Example  7, the existence  of fx  and fy  at (a, b) is not enough  to ensure  differentiability  of f  at 

(a, b). However,  by Theorem  15.5,  if fx  and fy  are continuous  at (a, b) (and defined  in an open set containing  

(a, b)), then we can conclude  f  is differentiable  there.  Polynomials  and rational  functions  are differentiable  at 

all points  of their  domains,  as are compositions  of exponential,  logarithmic,  and trigonometric  functions  with 

other differentiable  functions.  The proof  of this theorem  is given in Appendix  A.

We close with the analog  of Theorem  3.1, which  states  that differentiability  implies  continuity.

THEOREM  15.6 Differentiability  Implies  Continuity

If a function  f  is differentiable  at (a, b), then it is continuous  at (a, b).

Proof:  By the definition  of differentiability,  

Δz = fx (a, b) Δx + fy (a, b) Δy + ε1 Δx + ε2 Δy ,

where   (ε1, ε2)→ (0, 0) as (Δx, Δy)→ (0, 0). Because  f  is assumed  to be differentiable,  we see that as Δx  and Δy  

approach  0, 

lim
(Δx ,Δ y )→ (0,0)

Δz = 0.

Also, because  Δz = f (a + Δx, b + Δy) - f (a, b), it follows  that 

lim
(Δx ,Δ y )→ (0,0)

f (a + Δx, b + Δy) = f (a, b),

which  implies  continuity  of f  at (a, b).  ◆
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Note  »

Recall  that  continuity  requires  that  

lim
(x ,y )→(a ,b)

f (x , y ) = f (a , b),

which  is equivalent  to

lim
(Δx ,Δy )→(0,0)

f (a + Δx , b + Δy ) = f (a , b).

EXAMPLE  7 A nondifferentiable  function

Discuss  the differentiability  and continuity  of the function  

f (x, y) =

3 x y

x2 + y2
if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0).

SOLUTION   »

As a rational  function,  f  is continuous  and differentiable  at all points  (x, y) ≠ (0, 0). The interesting  behavior  

occurs  at the origin.  Using  calculations  similar  to those  in Example  4 in Section  15.2,  it can be shown  that if the

origin  is approached  along the line y = m x, then 

lim
(x ,y )→ (0,0)

along y = m x 

3 x y

x2 + y2
=

3 m

m2 + 1
.

Therefore,  the value of the limit  depends  on the direction  of approach,  which  implies  that the limit  does not 

exist,  and f  is not continuous  at (0, 0). By Theorem  15.6,  it follows  that f  is not differentiable  at (0, 0). Figure  

15.34 shows  the discontinuity  of f  at the origin.
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show grids

Figure 15.34

Let’s look at the first partial  derivatives  of f  at (0, 0). A short  calculation  shows  that 

fx(0, 0) = lim
h→0

f (0 + h, 0) - f (0, 0)

h
= lim

h→0

0 - 0

h
= 0,

fy (0, 0) = lim
h→0

f (0, 0 + h) - f (0, 0)

h
= lim

h→0

0 - 0

h
= 0.

Despite  the fact that its first partial  derivatives  exist  at (0, 0), f  is not differentiable  at (0, 0). As noted  earlier,  the 

existence  of first partial  derivatives  at a point  is not enough  to ensure  differentiability  at that point.  

Note  »

The  relationships  between  the  existence  and  continuity  of partial  derivatives  

and  whether  a function  is differentiable  are  further  explored  in Exercises  96–97.

Related  Exercises  77–78  ◆
Exercises  »

Getting  Started   »

14 Chapter 15 •  Functions of Several Variables

Copyright © 2019 Pearson Education, Inc.



Practice  Exercises   »

11–14.  Evaluating  partial  derivatives  using  limits   Use the limit  definition  of partial  derivatives  to 

evaluate  fx(x, y) and fy (x, y) for the following  functions.

11. f (x, y) = 5 x y

12. f (x, y) = x + y2 + 4

13. f (x, y) =
x

y

14. f (x, y) = x y

15–37.  Partial  derivatives   Find the first partial  derivatives  of the following  functions.

15. f (x, y) = x ey

16. f (x, y) = 4 x3 y2 + 3 x2 y3 + 10

17. f (x, y) = ex2 y

18. f (x, y) = 3 x y + 4 y2 + 15

19. f (w , z) =
w

w2 + z2

20. f (s, t ) =
s - t

s + t

21. f (x, y) = x cos x y

22. f (x, y) = tan-1
x2

y2

23. s(y , z) = z2 tan y z

24. g (x, z) = x ln z2 + x2

25. G(s, t ) =
s t

s + t

26. F (p, q) = p2 + pq + q2

27. f (x, y) = x2 y

28. g (x, y) = cos5x2 y3
29. h(x, y) = x - x2 - 4 y
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30. h(u, v) =
uv

u - v

31. f (x, y) = 
x

y 3

et 2

dt

32. g (x, y) = y sin-1 x y

33. f (x, y) = 1 - tan-1x2 + y2
34. f (x, y) = ln (1 + e-x y )

35. h(x, y) = (1 + 2 y)x

36. f (x, y) = 1 - cos (2 (x + y)) + cos2(x + y)

37. f (x, y) = 
x

y

h(s) d s, where  h is continuous  for all real numbers

38–47.  Second  partial  derivatives   Find the four second  partial  derivatives  of the following  functions.

38. f (x, y) = x2 sin y

39. h(x, y) = x3 + x y2 + 1

40. f (x, y) = 2 x5 y2 + x2 y

41. f (x, y) = y3 sin 4 x

42. f (x, y) = sin2x3 y
43. p(u, v) = ln u2 + v2 + 4

44. Q(r , s) =
er 3 s

s

45. F (r , s) = r es

46. H (x, y) = 4 + x2 + y2

47. f (x, y) = tan-1x3 y2
48–53.  Equality  of mixed  partial  derivatives   Verify  that fx y = fy x  for the following  functions.

48. f (x, y) = 3 x2 y-1 - 2 x-1 y2

49. f (x, y) = ex+y

50. f (x, y) = x y

51. f (x, y) = cos x y
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52. f (x, y) = esin x y

53. f (x, y) = 2 x - y34

54–62.  Partial  derivatives  with more  than two variables   Find the first partial  derivatives  of the following  

functions.

54. G(r , s, t ) = r s + r t + s t

55. h(x, y , z) = cos (x + y + z)

56. g (x, y , z) = 2 x2 y - 3 x z4 + 10 y2 z2

57. F (u, v, w) =
u

v + w

58. Q(x, y , z) = tan x y z

59. G(r , s, t ) = r s3 t 5

60. g (w , x, y , z) = cos (w + x) sin (y - z)

61. h(w , x, y , z) =
w z

x y

62. F (w , x, y , z) = w x + 2 y + 3 z

63. Exploiting  patterns   Let R(t ) =
a t + b

c t + d
 and g (x, y , z) =

4 x - 2 y - 2 z

-6 x + 3 y - 3 z
. 

a. Verify  that R ' (t ) =
a d - bc

(c t + d)2
. 

b. Use the derivative  R ' (t ) to find the first partial  derivatives  of g .

64–67.  Estimating  partial  derivatives  from a table   The following  table  shows  values  of a function  f (x, y) 

for values  of x from 2 to 2.5 and values  of y  from 3 to 3.5. Use this table  to estimate  the values  of the 

following  partial  derivatives.

64. fx(2, 3)

65. fy (2, 3)
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66. fx(2.2, 3.4)

67. fy (2.4, 3.3)

68. Estimating  partial  derivatives  from  a graph Use the level  curves  of f  (see figure)  to estimate  the 

values  of fx  and fy  at A(0.42, 0.5).

69. Gas law calculations   Consider  the Ideal  Gas Law P V = k T , where  k > 0 is a constant.  Solve  this 

equation  for V  in terms of P  and T .

a. Determine  the rate of change  of the volume  with respect  to the pressure  at constant  

temperature.  Interpret  the result.

b. Determine  the rate of change  of the volume  with respect  to the temperature  at constant  

pressure.  Interpret  the result.

c. Assuming  k = 1, draw several  level  curves  of the volume  function  and interpret  the results  as in 

Example  6.

70. Body mass  index   The body mass index  (BMI)  for an adult  human  is given by the function  B =
w

h2
, 

where  w  is the weight  measured  in kilograms  and h is the height  measured  in meters.

a. Find the rate of change  of the BMI with respect  to weight  at a constant  height.

b. For fixed h, is the BMI an increasing  or decreasing  function  of w? Explain.

c. Find the rate of change  of the BMI with respect  to height  at a constant  weight.

d. For fixed w , is the BMI an increasing  or decreasing  function  of h? Explain.

71. Resistors  in parallel   Two resistors  in an electrical  circuit  with resistance  R1 and R2 wired  in parallel  

with a constant  voltage  give an effective  resistance  of R, where  
1

R
=

1

R1

+
1

R2

.
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a. Find 
∂R

∂R1

 and 
∂R

∂R2

 by solving  for R and differentiating.

b. Find 
∂R

∂R1

 and 
∂R

∂R2

 by differentiating  implicitly.

c. Describe  how an increase  in R1 with R2 constant  affects  R.

d. Describe  how a decrease  in R2 with R1 constant  affects  R.

72. Spherical  caps   The volume  of the cap of a sphere  of radius  r  and thickness  h is V =
π
3

h2(3 r - h), 

for 0 ≤ h ≤ 2 r .

a. Compute  the partial  derivatives  Vh  and Vr .

b. For a sphere  of any radius,  is the rate of change  of volume  with respect  to r  greater  when 

h = 0.2 r  or when h = 0.8 r?

c. For a sphere  of any radius,  for what  value of h is the rate of change  of volume  with respect  to r  

equal  to 1?

d. For a fixed radius  r , for what  value of h (0 ≤ h ≤ 2 r) is the rate of change  of volume  with respect  

to h the greatest?

73–76.  Heat  equation  The flow of heat along a thin conducting  bar is governed  by the one-dimensional  

heat equation  (with analogs  for thin plates  in two dimensions  and for solids  in three  dimensions),  

∂u

∂ t
= k

∂2 u

∂x2
,

where  u is a measure  of the temperature  at a location  x on the bar at time t  and the positive  constant  k is 

related  to the conductivity  of the material.  Show that the following  functions  satisfy  the heat equation  with 

k = 1.

73. u(x, t ) = 4 e-4 t cos 2 x

74. u(x, t ) = 10 e-t sin x
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75. u(x, t ) = A e-a2 t cos a x, for any real numbers  a and A

76. u(x, t ) = e-t (2 sin x + 3 cos x)

77–78.  Nondifferentiability?  Consider  the following  functions  f .

a. Is f  continuous  at (0, 0)?

b. Is f  differentiable  at (0, 0)?

c. If possible,  evaluate  fx(0, 0) and fy (0, 0).

d. Determine  whether  fx  and fy  are continuous  at (0, 0).

e. Explain  why Theorems  15.5 and 15.6 are consistent  with the results  in parts  (a)–(d).

77. f (x, y) =
-

x y

x2 + y2
if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)

78. f (x, y) =

2 x y2

x2 + y4
if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)

79. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a.
∂
∂x

y10 = 10 y9.

b.
∂2

∂x ∂y
 x y  = 1

x y
.

c. If f  has continuous  partial  derivatives  of all orders,  then fx x y = fy x x .

80. Mixed  partial  derivatives

a. Consider  the function  w = f (x, y , z). List all possible  second  partial  derivatives  that could  be 

computed.

b. Let f (x, y , z) = x2 y + 2 x z2 - 3 y2 z  and determine  which  second  partial  derivatives  are equal.

c. How many  second  partial  derivatives  does p = g (w , x, y , z) have?

Explorations  and Challenges   »

81. Partial  derivatives  and level  curves   Consider  the function  z =
x

y2
.

a. Compute  zx  and zy .

b. Sketch  the level  curves  for z = 1, 2, 3, and 4.

c. Move along the horizontal  line y = 1 in the xy-plane  and describe  how the corresponding  z-

values  change.  Explain  how this observation  is consistent  with zx  as computed  in part (a).

d. Move along the vertical  line x = 1 in the xy-plane  and describe  how the corresponding  z-values  

change.  Explain  how this observation  is consistent  with zy  as computed  in part (a).

82. Volume  of a box   A box with a square  base of length  x  and height  h has a volume  V = x2 h.

a. Compute  the partial  derivatives  Vx  and Vh .
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b. For a box with h = 1.5 m, use linear  approximation  to estimate  the change  in volume  if x  

increases  from x = 0.5 m to x = 0.51 m.

c. For a box with x = 0.5 m, use linear  approximation  to estimate  the change  in volume  if h 

decreases  from h = 1.5 m to h = 1.49 m.

d. For a fixed height,  does a 10% change  in x  always  produce  (approximately)  a 10% change  in V ? 

Explain.

e. For a fixed base length,  does a 10% change  in h always  produce  (approximately)  a 10% change  

in V ? Explain.

83. Electric  potential  function   The electric  potential  in the xy-plane  associated  with two positive  

charges,  one at (0, 1) with twice  the magnitude  of the charge  at (0, -1), is 

ϕ(x, y) =
2

x2 + (y - 1)2
+

1

x2 + (y + 1)2

a. Compute  ϕx  and ϕy .

b. Describe  how ϕx  and ϕy  behave  as x, y → ±∞.

c. Evaluate  ϕx(0, y), for all y ≠ ±1. Interpret  this result.

d. Evaluate  ϕy (x, 0), for all x. Interpret  this result.

T 84. Cobb-Douglas  production  function   The output  Q of an economic  system  subject  to two inputs,  

such as labor  L and capital  K , is often modeled  by the Cobb-Douglas  production  function  

Q(L, K ) = c La K b . Suppose  a =
1

3
, b =

2

3
, and c = 1.

a. Evaluate  the partial  derivatives  QL  and QK .

b. Suppose  L = 10 is fixed and K  increases  from K = 20 to K = 20.5. Use linear  approximation  to 

estimate  the change  in Q.

c. Suppose  K = 20 is fixed and L decreases  from L = 10 to L = 9.5. Use linear  approximation  to 

estimate  the change  in Q.

d. Graph  the level  curves  of the production  function  in the first quadrant  of the L K -plane  for 

Q = 1, 2, and 3.

e. Use the graph  of part (d). If you move along the vertical  line L = 2 in the positive  K -direction,  

how does Q  change?  Is this consistent  with QK  computed  in part (a)?

f. Use the graph  of part (d). If you move along the horizontal  line K = 2 in the positive  L-direction,  

how does Q  change?  Is this consistent  with QL  computed  in part (a)?

85. An identity   Show that if f (x, y) =
a x + b y

c x + d y
, where  a, b, c, and d  are real numbers  with a d - b c = 0, 

then fx = fy = 0, for all x  and y  in the domain  of f . Give an explanation.

86. Wave on a string   Imagine  a string  that is fixed at both ends (for example,  a guitar  string).  When  

plucked,  the string  forms  a standing  wave.  The displacement  u of the string  varies  with position  x  

and with time t . Suppose  it is given by u = f (x, t ) = 2 sin (π x) sin
π t

2
, for 0 ≤ x ≤ 1 and t ≥ 0 (see 

figure).  At a fixed point  in time,  the string  forms  a wave on [0, 1]. Alternatively,  if you focus  on a 

point  on the string  (fix a value of x), that point  oscillates  up and down  in time.

a. What is the period  of the motion  in time?

b. Find the rate of change  of the displacement  with respect  to time at a constant  position  (which  is 

the vertical  velocity  of a point  on the string).
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c. At a fixed time,  what  point  on the string  is moving  fastest?

d. At a fixed position  on the string,  when is the string  moving  fastest?

e. Find the rate of change  of the displacement  with respect  to position  at a constant  time (which  is 

the slope of the string).

f. At a fixed time,  where  is the slope of the string  greatest?

t

x

3D view

0.2 0.4 0.6 0.8
x

-2

-1

2

1

u

87–89.  Wave  equation  Traveling  waves  (for example,  water  waves  or electromagnetic  waves)  exhibit  

periodic  motion  in both time and position.  In one dimension,  some types  of wave motion  are governed  by 

the one-dimensional  wave equation  

∂2 u

∂ t 2
= c2

∂2 u

∂x2
,

where  u(x, t ) is the height  or displacement  of the wave surface  at position  x and time t, and c is the 

constant  speed of the wave.  Show that the following  functions  are solutions  of the wave equation.

87. u(x, t ) = cos (2 (x + c t ))

88. u(x, t ) = 5 cos (2 (x + c t )) + 3 sin (x - c t )

89. u(x, t ) = A f (x + c t ) + B g (x - c t ), where  A and B are constants,  and f  and g  are twice  differentiable  

functions  of one variable.

90–93.  Laplace’s  equation  A classical  equation  of mathematics  is Laplace’s  equation,  which  arises  in both

theory  and applications.  It governs  ideal  fluid flow, electrostatic  potentials,  and the steady-state  

distribution  of heat in a conducting  medium.  In two dimensions,  Laplace’s  equation  is 

∂2 u

∂x2
+
∂2 u

∂y2
= 0.

Show that the following  functions  are harmonic; that is, they satisfy  Laplace’s  equation.

90. u(x, y) = e-x sin y

91. u(x, y) = x x2 - 3 y2
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92. u(x, y) = ea x cos a y , for any real number  a

93. u(x, y) = tan-1
y

x - 1
- tan-1

y

x + 1

94–95.  Differentiability   Use the definition  of differentiability  to prove  that the following  functions  are 

differentiable  at (0, 0). You must  produce  functions  ε1 and ε2  with the required  properties.

94. f (x, y) = x + y

95. f (x, y) = x y

96–97.  Nondifferentiability?   Consider  the following  functions  f .

a. Is f  continuous  at (0, 0)?

b. Is f  differentiable  at (0, 0)?

c. If possible,  evaluate  fx(0, 0) and fy (0, 0).

d. Determine  whether  fx  and fy  are continuous  at (0, 0).

e. Explain  why Theorems  15.5 and 15.6 are consistent  with the results  in parts  (a)—(d).

96. f (x, y) = 1 - x y 
97. f (x, y) = x y 
98. Cauchy-Riemann  equations   In the advanced  subject  of complex  variables,  a function  typically  has 

the form f (x, y) = u(x, y) + i v(x, y), where  u and v  are real-valued  functions  and i = -1  is the 

imaginary  unit.  A function  f = u + i v  is said to be analytic (analogous  to differentiable)  if it satisfies  

the Cauchy-Riemann  equations:  ux = vy  and uy = -vx .

a. Show that f (x, y) = x2 - y2 + i (2 x y) is analytic.

b. Show that f (x, y) = x x2 - 3 y2 + i y 3 x2 - y2 is analytic.

c. Show that if f = u + i v  is analytic,  then ux x + uy y = 0 and vx x + vy y = 0. Assume  u and v  satisfy  

the conditions  in Theorem  15.4.

99. Derivatives  of an integral   Let h be continuous  for all real numbers.  Find fx  and fy  when 

f (x, y) = 
1

x y

h(s) d s.
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