Math 250: Final Review, Fall 2023

13.5) Lines and Planes in Space. 1-10, 11-26, 27-30, 31-37, 43-58, 61-64, 65-68, 71-72, 73-76, 77-80.

1. (a) Find the equation of the line that is perpendicular to the plane $2 x+3 y-z=5$ and contains the point $\langle 1,-1,2\rangle$.
(b) Find an equation of the line that goes through the point $(0,2,3)$ and is perpendicular to the vectors $\vec{v}=\langle 1,0,1\rangle$ and $\vec{w}=\langle 1,2,0\rangle$.
(c) Find the equation of the line contained in the planes and $x+y+z=1$ and $2 x+3 y+z=4$.
2. (a) Find the equation of the plane that contains the point $(2,3,1)$, and is perpendicular to the line $\vec{r}(t)=\langle-1+5 t, 7-t, 3 t\rangle$.
(b) Find the equation of the plane that contains the points $(1,2,0),(2,3,1)$, and $(3,2,1)$.
(c) Find the equation of the plane that contains the point $(1,2,3)$ and contains the line $\vec{r}(t)=\langle 3-t, 2+t, 1+2 t\rangle$.
13.6) Cylinders and Quadric Surfaces. 1-6, 7-12, 15-20, 21-28, 29-51, 54-58, 60.
3. Sketch the surfaces.
(a) $4 x^{2}+z^{2}=4$.
(b) $z=4-y^{2}$.
4. Sketch the $x y, x z$, and $y z$ traces. Then sketch the surface.
(a) $x^{2}-y^{2}-z^{2}=1$.
(b) $-x^{2}+y^{2}+4 z^{2}=4$.
(c) $9 x^{2}-y^{2}+9 z^{2}=0$.
15.1) Graphs and Level Curves. 25-33, 34, 35, 36-43, 74-77.
5. Sketch each function $f(x, y)$.
(a) $f(x, y)=6-2 x-3 y$
(b) $f(x, y)=x^{2}+\frac{1}{4} y^{2}$
(c) $f(x, y)=y^{2}-x^{2}$
6. Sketch the level curves $f(x, y)=c$ for $c=-1,0,1,2$.
(a) $f(x, y)=2 x-y$.
(b) $f(x, y)=x^{2}-y^{2}$.
(c) $f(x, y)=3-e^{x^{2}+y^{2}}$.
15.2) Limits and Continuity. 10-12, 13-27, 29-34, 35-50, 52-53, 62-67, 71.
7. (a) Find $\lim _{(x, y) \rightarrow(-1,2)} \frac{\ln (x+y)}{x^{2}+y^{2}}$.
(b) Find $\lim _{(x, y) \rightarrow(3,-1)} \frac{x^{2}-9 y^{2}}{x y+3 y^{2}}$.
8. (a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{2 x^{2}+y^{2}}$ does not exist.
(b) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{3}+x y^{2}}$ does not exist.
15.3) Partial Derivatives. 1-9, 11-14, 15-30, 32-34, 38-46, 48-53, 54-59.
9. Use the limit definition to find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
(a) $f(x, y)=3 x-y$.
(b) $f(x, y)=x y^{2}$.
10. Find all first and second partials.
(a) $f(x, y)=\sin (x y)$.
(b) $f(x, y)=\ln \left(x^{2}+y^{3}\right)$.
15.4) The Chain Rule. 9-18, 19-26, 27-28, 29-30, 35-40, 57-59, 65, 67-69, 72-73, 75.
11. $w=x^{3} y^{2}, x=t^{2}+1, y=t-e^{2-t}$. Use the chain rule to find $\frac{d w}{d t}$ at $t=2$.
12. $w=\ln (x y), x=2 u+3 v, y=\frac{v^{2}}{u}$. Use the chain rule to find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at $(u, v)=$ $(2,-1)$.
13. (a) If $F(x, y, z)=c$ where c is constant and $y=y(x, z)$, use the chain rule to show that $\frac{\partial y}{\partial z}=-\frac{\partial F}{\partial z} / \frac{\partial F}{\partial y}$.
(b) Use this formula to find $\frac{\partial y}{\partial z}$, when $y e^{x z}+x e^{y z}=1$.
14. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by implicit differentiation. $x^{2} y+y^{2} z+x z^{3}=1$.
15. For a unit-length pendulum, if θ is the angular position and $v=\frac{d \theta}{d t}$, then $\frac{d v}{d t}=-g \sin (\theta)$, where g is constant. Use the chain rule to show that $\frac{d E}{d t}=0$, where $E(\theta, v)=\frac{1}{2} v^{2}-$ $g \cos (\theta)$.
15.5) Directional Derivatives and Gradient. 1-10, 11-12. 13-20, 21-30, 31-36, 43-44, 47-50, 59-64, 69-72, 74, 75-78, 81, 82, 85.
16. Find the gradient of f at the point P. Then find $D_{\vec{u}} f$ in the direction $\vec{u} . f(x, y, z)=$ $x^{2} y+z^{3}, P=(-1,2,1), \vec{u}=\left\langle\frac{-2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$.
17. $f(x, y)=x^{2}+x y-y^{3}$.
(a) Find the maximum rate of change of f (steepest ascent), and the direction of the maximum rate of change, at $P=(3,2)$.
(b) Find a vector that points in a direction of no change of f, at $P=(3,2)$.
18. $f(x, y)=x y$.
(a) Graph the level set of f through the point $(2,1)$.
(b) Include the vector $\nabla f(2,1)$ on your graph.
(c) Find the tangent line to the level set at the point $(2,1)$ and include it on your graph.
(d) How are the answers to parts b and c related?
15.6) Tangent Planes. 3-4, 9, 11, 13-28, 29-32, 54-56.
19. Find the tangent plane to the surface at the given point.
(a) $3 x^{2}+x y+z^{2}=5, P=(-1,2,2)$.
(b)
(c) $x e^{y z}=3, P=(3,0,2)$.
(d) $\frac{x-y}{3 y+z}=1, P=(3,1,-1)$.
20. Find the tangent plane to the surface at the given point.
(a) $z=\sqrt{x^{2}-y^{2}}, P=(5,4,3)$.
(b) $z=3-\sin (x y), P=(2,0,3)$.
(c) $y=x e^{x+2 z}, P=(2,1,-1)$.
15.7) Maximum/Minimum Problems. 9-12, 13-22, 23-37, 41-42, 43-46, 62-66, 71.
21. Find any critical points and classify each as relative maximum, relative minimum, or saddle.
(a) $f(x, y)=e^{-x^{2}}+e^{-y^{2}}$
(b) $f(x, y)=x^{2}+y^{2}+x y-x-2 y$
(c) $f(x, y)=x y-2 x-y$
(d) $f(x, y)=x^{4}-2 x^{2}+y^{2}$
22. Find the minimum of $x^{2}+y^{2}+z^{2}$ if (x, y, z) is on the plane $x-z=2$. Use the second derivative test to prove your answer is a local minimum.
23. Find the maximum volume of a box $V=x y z$ if the point (x, y, z) is on the paraboloid $z=4-x^{2}-y^{2} .(x, y, z>0$.) Use the second derivative test to prove your answer is a local maximum.
15.8) Lagrange Multipliers. 3-4, 5-6, 7-23, 26, 27-36.
24. Use Lagrange multipliers to find the maximum and minimum of $f(x, y)=x y^{3}$ if $x^{2}+y^{2}=4$.
25. The area of a rectangle with vertices $(\pm x, \pm y)$ is $4 x y$. Use Langrange multipliers to find the maximum area of such a rectangle with vertices on the ellipse $4 x^{2}+y^{2}=32$.
26. Use Lagrange multipliers to find the minimum distance between the plane $3 x+y-z=$ 18 and the point $(2,0,-1)$. (Hint: To find (x, y, z) you can minimize the square of the distance, $f(x, y, z)=(x-2)^{2}+y^{2}+(z+1)^{2}$.)
16.1) Double Integrals, Rectangular Regions. 1-3, 5-6, 7-24, 25-35, 36-39, 40-45, 46-50, 53-54.
27. Find the average value of $f(x)=2 y-x$ for $0 \leq x \leq 2,1 \leq y \leq 3$.
28. Choose the most convenient order of integration and evaluate the integral.
(a) $\iint_{R} x y e^{x y^{2}} d A, \quad 0 \leq x \leq \ln (3), 0 \leq y \leq 1$.
(b) $\iint_{R} \frac{y}{\sqrt{1+x y}} d A, \quad 0 \leq x \leq 1,0 \leq y \leq 3$.
16.2) Double Integrals, General Regions. 5-8, 9-10, 11-27, 28-34, 35-42, 43-53, 57-62, 63-68, 69, 70, 71, 73-80, 85-90, 95-96, 99-102.
29. Find the volume under $f(x, y)=2 y-1$, on the region between $x=y^{2}+3$ and $x=3 y+1$.
30. Evaluate the integrals by changing the order of integration.
(a) $\int_{0}^{6} \int_{\frac{1}{2} x}^{3} x y^{y^{2}} d y d x$.
(b) $\int_{0}^{4} \int_{-\sqrt{y}}^{\sqrt{y}} e^{12 x-x^{3}} d x d y$
16.3) Double Integrals in Polar Coordinates. 7-10, 11-14, 15-18, 19-20, 21-30, 31-40, 42, 44-46,47, 49-50, 53-54, 57-60, 65-68.
31. Evaluate the integral by converting to polar.
(a) $\int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}} x y d y d x$.
(b) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y$.
(c) $\int_{1}^{2} \int_{-x}^{x} 1 d y d x$.
16.4) Triple Integrals. $4-6,7-14,15-29,30-35,36-37,38-46,47-50,51-54,57-58,62-63,67-70$.
32. Express the volume under $x^{2}+4 y+z=4$, with $x, y, z \geq 0$ by six different triple integrals.
33. V is the region between $y=x^{2}, z=0$, and $y+2 z=4$.
(a) Find the volume using an integral $d y d x d z$.
(b) Find the volume using an integral $d z d x d y$.
16.5) Cylindrical and Spherical Coordinates. 3-4, 9-10, 11-14, 15-22, 23-28, 29-34, 35-38, 41-47, 48-54, 58-61, 62-63, 64-65, 66-72, 77-79.
34. Evaluate $\iiint_{V} \frac{z}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y d z$ where V is the region with $1 \leq x^{2}+y^{2} \leq 4$ and $0 \leq z \leq$ $4-x^{2}-y^{2}$.
35. Evaluate $\iiint_{V} x z d x d y d z$ where V is the region inside the sphere of radius 2 in the first octant.
36. (a) Find the volume of the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below $z=3$ by an integral in cylindrical coordinates.
(b) Find the same volume using an integral in spherical coordinates.
37. (a) Find the volume of the region inside the sphere $x^{2}+y^{2}+z^{2}=25$ and outside the cylinder $x^{2}+y^{2}=9$ by an integral in cylindrical coordinates.
(b) Find the same volume using an integral in spherical coordinates.
16.7) Change of Variables. 5-11, 13-16, 17-22, 23-26, 27-30, 31-36, 37-39, 41-44, 46-47, 48, 50-52, 53, 56.
38. Let R be the region between $x y=1, x y=2, y=x, y=3 x$. Use the change of variables $u=x y, v=\frac{y}{x}$ to find the area of R by a double integral.
39. Let R be the region with $1 \leq x+2 y \leq 3,0 \leq 3 x+4 y \leq 2$. Use a change of variables to evaluate $\iint_{R} x d A$.
40. Let R be the region inside the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$, with $y \geq 0$. Evaluate $\int_{R} y d x d y$ by making the change of variables $x=2 u, y=5 v$.
17.1) Vector Fields. $2,8-15,18,24,25-30,35-42,43-45,47-48,49-52$.
41. Sketch the vector fields: $\vec{F}(x, y)=\langle x, y\rangle$ and $V(x, y)=\langle y,-x\rangle$.
42. Plot the vector field at the points $(1,0),(0,1),(1,1)$, and $(-1,1) . \vec{F}(x, y)=\langle 2 x+y,-x+2 y\rangle$.
17.2) Line Integrals. 4-10, 12-16, 17-34, 35-36, 39-40, 41-46, 47-48, 49-56, 57-60, 62, 64-65, 68, 70-72, 73.
43. Evaluate the line integrals.
(a) $\int_{c} y z d x+x y d z \vec{r}(t)=\left\langle 1, t, t^{2}\right\rangle$, from $(1,0,0)$ to $(1,2,4)$.
(b) $\int_{c} x z d s$, where c is the line from $(0,1,-1)$ to $(2,0,1)$.
(c) $\int_{c}\langle x-y, 2 y\rangle \cdot d \vec{r}$, where c is the curve along $x=y^{4}$ that connects $(1,-1)$ to $(16,2)$.
17.3) Conservative Vector Fields. 7, 9-16, 17-30, 31-34, 39-42, 44, 45-50, 51-52, 54-56, 59-62, 63-64.
44. $\vec{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$.
(a) Find a function ϕ such that $\nabla \phi=\vec{F}$.
(b) Use this to find $\int_{c} \vec{F} \cdot d \vec{r}$, where $\vec{r}(t)=\langle 1+t, 2 t\rangle, 0 \leq t \leq 2$.
45. $\vec{F}=\langle 1+\cos (y), 2 y-x \sin (y)\rangle$.
(a) Show \vec{F} is conservative.
(b) Find a function ϕ such that $\nabla \phi=\vec{F}$.
(c) Use this to evaluate $\int_{c} \vec{F} \cdot d \vec{r}, \vec{r}(t)=\left\langle 2^{t}, \pi t\right\rangle, 0 \leq t \leq 1$.
46. Show \vec{F} is conservative, and find a function ϕ such that $\nabla f=\vec{F}$. $\vec{F}=\left\langle 2 x+y, x+2,3 z^{2}\right\rangle$.
17.4) Green???s Theorem. 9-14, 15-16, 17-20, 21-25, 27-30, 31-40, 41-45, 48, 53-54.
47. Use Green's theorem to compute $\int_{c} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}+2 x y \vec{j}$, and c along the rectangle with vertices $(0,0),(2,0),(2,1),(0,1)$ oriented counterclockwise.
48. Let R be the region $x^{2} \leq y \leq 1, \vec{F}=\langle x-y, x+y\rangle$.
(a) Compute $\int_{c} \vec{F} \cdot d \vec{r}$ directly, where c is the boundary oriented counterclockwise. (The boundary has two components!)
(b) Use Green's theorem to compute $\int_{c} \vec{F} \cdot d \vec{r}$. Show that you get the same answer.
49. Use Green's theorem to compute $\int_{c}\langle x-y, 2 x+3 y\rangle \cdot \vec{n} d s$, where c is the triangle with vertices $(0,0),(1,0),(1,2)$.
50. Verify Green's Theorem (flux form) by computing both sides. $\vec{F}=\left\langle x^{3}, y^{3}\right\rangle$ with c the circle which bounds the region $x^{2}+y^{2} \leq 4$, oriented counterclockwise.
17.5) Divergence and Curl. 9-16, 17, 19, 21-22, 27-34, 41, 42, 44, 65, 67-69, 73.
51. Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F} . \vec{F}(x, y, z)=\left\langle x^{3}, x^{2} y, y z^{3}\right\rangle$.
52. Show that if $\vec{F}=\nabla \phi$ for some $\phi(x, y, z)$, then $\nabla \times \vec{F}=\overrightarrow{0}$.
53. Show there is no function $\phi(x, y, z)$ with $\nabla \phi=\left\langle x^{2}+y^{2}, x y z, e^{x z}\right\rangle$.
17.6) Surface Integrals. $9-14,15,17-18,19-24,25-28,29-34^{*}, 35-38^{*}, 43-48^{*}, 52,70-72,74-75$.
*: For 29-34, 35-38, 43-48, you must parametrize the surface by $r(u, v)$ and use the parametric form to do the integrals, rather than the ???explicit??? form indicated in the book here.
54. Evaluate $\iint_{S} 1 d S$, where S is the paraboloid $z=1-x^{2}-y^{2}$ with $z \geq 0$.
55. Evaluate $\iint_{S}\langle 1,0,2\rangle \cdot d \vec{S}$, where S is the cone $z=\sqrt{x^{2}+y^{2}}$ with $0<z<2$. Upward pointing normal.
56. Use a surface integral to find the area of the region of the plane $z=x+2 y+3$ with $x^{2} \leq y \leq 3 x$.
57. A surface of revolution given by $y=f(x)$ revolved around the x-axis can be written $\vec{r}(u, v)=\langle v, f(v) \cos (u), f(v) \sin (u)\rangle$, with $0 \leq u \leq 2 \pi, a \leq v \leq b$. Use this to derive the formula Area $=2 \pi \int_{a}^{b} f(v) \sqrt{1+\left(f^{\prime}(v)\right)^{2}} d v$.
58. A helicoid is given by the parametric surface $\vec{r}(u, v)=\langle u \cos (v), u \sin (v), v\rangle$, with $0 \leq u \leq 1,0 \leq v \leq \pi$. Evaluate the integrals.
(a) $\iint_{S}\langle x, y, z\rangle \cdot d \vec{S}$. Upward pointing normal.
(b) $\iint_{S} y d S$.
17.7) Stokes??? Theorem. 5-10, 11-16, 17-24, 30-33, 45.
59. Compute both sides in Stokes' theorem and show that they are equal, for the surface $z=4-x^{2}-y^{2}, z \geq 0 . \vec{F}=\left\langle-y, x, z^{2}\right\rangle$.
60. Use Stokes' theorem to evaluate $\iint_{S} \nabla \times \vec{F} \cdot d \vec{S}$, where S is the hemisphere $x^{2}+y^{2}+z^{2}=9$, $y \geq 0$, and $\vec{F}=\left\langle x-z, e^{x y}, x+z\right\rangle$. Right pointing normal.
61. Use Stokes' theorem to evaluate $\int_{c} \vec{F} \cdot d \vec{r}$ where c is the triangle with vertices $(1,0,0)$, $(0,1,0),(0,0,1)$ oriented counterclockwise, and $\vec{F}=\langle x-y, x+y, z\rangle$. (Hint: $z=1-x-y$ gives the surface, with $0 \leq x \leq 1,0 \leq y \leq 1-x)$.
17.8) Divergence Theorem. 9-12, 13-16, 17-24, 25-27, 30.
62. $\vec{F}(x, y, z)=\left\langle y,-x, z^{2}\right\rangle$. Evaluate both sides of the divergence theorem and show that they are equal, for the region $x^{2}+y^{2} \leq z \leq 4$. (The boundary has two pieces, $z=x^{2}+y^{2}$ and $z=4$. Outward pointing normals.)
63. Use the divergence theorem to evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$. The surfaces have outward pointing normal.
(a) $\vec{F}=\langle x, y, z\rangle, S$ the boundary of the tetrahedron $x, y, z \geq 0, x+2 y+3 z \leq 6$.
(b) $\vec{F}=\left\langle x^{3} z, y^{3} z, x y\right\rangle . S$ the sphere $x^{2}+y^{2}+z^{2}=9$.
