Problem 1.

Let D be the solid in the first octant bounded by the planes y = 0, z = 0, and y = x, and the cylinder $4x^2 + z^2 = 4$. Write the triple integral of f(x, y, z) over D in the given order of integration.

Solution

order of integration: dzdydx

From $4x^2 + z^2 = 4$, we obtain $z = \pm 2\sqrt{1-x^2}$, also since $z \ge 0$ we must have $z = 2\sqrt{1-x^2}$. Thus, the lower limit of integration for z is z = 0 and the upper limit of integration is $z = 2\sqrt{1-x^2}$. Also, from $4x^2 + z^2 = 4$, we see that x = 1 when z = 0, and since $x \ge 0$, we must have $0 \le x \le 1$. Similarly for y variable $(y \ge 0$ and for x = 1, y = x = 1): $0 \le y \le 1$. Finally, from $4x^2 + z^2 = 4$ when x = 0, we have $z = \pm 2$ and since $z \ge 0$, we have $0 \le z \le 2$.

Next, the projection of D on xy-plane (i.e., when z = 0) is the region $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le x\}$.

$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{2\sqrt{1-x^{2}}} f(x, y, z) \, dz \, dy \, dx$$

order of integration: dzdxdy

The limits of integration for z are as before. Now, from $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le x\}$, we see that $x \ge y$ and since $x \le 1$, the lower limit of integration for variable x is x = y and the upper limit of integration for variable x is x = 1. Finally, $0 \le y \le 1$, thus

$$\int_{0}^{1} \int_{y}^{1} \int_{0}^{2\sqrt{1-x^{2}}} f(x, y, z) \, dz \, dx \, dy$$

order of integration: dydxdz

Variable y is between the plane y = 0 and the plane y = x, thus the lower limit of integration for variable y is y = 0 and the upper limit of integration is for variable y is y = x. The projection of D on the xz plane (i.e., when y = 0) is the region $R = \{(x, z) : 0 \le x \le \frac{1}{2}\sqrt{4 - z^2}, 0 \le z \le 2\}$, This region is the inside of the quarter of the elipse $4x^2 + z^2 = 4$ in the first quadrant of xz-coordinate system. Therefore

$$\int_{0}^{2} \int_{0}^{\frac{1}{2}\sqrt{4-z^{2}}} \int_{0}^{x} f(x,y,z) \, dy \, dx \, dz$$

Changing the order of integration

order of integration: dydzdx

The limits of integration for y are the same as in the last case. The quarter of the elipse $4x^2 + z^2 = 4$ in the first quadrant of xz-coordinate system (i.e., the projection of D on the xz plane) can be also described as $R = \{(x, z) : 0 \le x \le 1, 0 \le z \le 2\sqrt{1-x^2}\}$. Therefore,

$$\int_{0}^{1} \int_{0}^{2\sqrt{1-x^{2}}} \int_{0}^{x} f(x, y, z) \, dy \, dz \, dx$$

order of integration: dxdydz

x is between the plane x = y and the cylinder $4x^2 + z^2 = 4$. In other words, $y \le x \le \frac{1}{2}\sqrt{4-z^2}$. Thus, the lower limit of integration for variable x is x = y and the upper limit of integration for variable x is $x = \frac{1}{2}\sqrt{4-z^2}$. For each such x, variable y also varies between y = 0 and $y = \frac{1}{2}\sqrt{4-z^2}$, with $0 \le z \le 2$. Thus

$$\int_{0}^{2} \int_{0}^{\frac{1}{2}\sqrt{4-z^{2}}} \int_{y}^{\frac{1}{2}\sqrt{4-z^{2}}} \int_{y}^{\frac{1}{2}\sqrt{4-z^{2}}} f(x,y,z) \, dx \, dy \, dz$$

order of integration: dxdzdy

As in the last case, the lower limit of integration for variable x is x = y and the upper limit of integration for variable x is $x = \frac{1}{2}\sqrt{4-z^2}$. Also z is between z = 0 and $z = 2\sqrt{1-x^2}$. Since $0 \le y \le x \le 1$, we have $y^2 \le x^2$, consequently, $1 - y^2 \ge 1 - x^2$, implying that $z = 2\sqrt{1-x^2} \le 2\sqrt{1-y^2}$. Therefore, the lower limit of integration for variable z is z = 0 and the upper limit of integration for variable z is $z = 2\sqrt{1-y^2}$. Since y varies between y = 0 and y = 1, we have

$$\int_{0}^{1} \int_{0}^{2\sqrt{1-y^2}} \int_{y}^{\frac{1}{2}\sqrt{4-z^2}} \int_{y}^{1-y^2} f(x,y,z) \, dx \, dz \, dy$$

Problem 2.

Let D be the solid in the first octant bounded by y = x, $z = 1 - y^2$, x = 0, and z = 0. Write triple integrals over D in all six possible orders of integration.

Solution

Since $z = 1 - y^2 \ge 0$, we have $0 \le y \le 1$, and $0 \le z \le 1$, Additionally, x is between the plane x = 0 and the plane x = y, and since $0 \le y \le 1$, we must have $0 \le x \le 1$.

order of integration: dzdydx

z is between z = 0 and $z = 1 - y^2$, therefore, the lower limit of integration for variable z is z = 0 and the upper limit of integration for variable z is $z = 1 - y^2$. Variable y (see the graph) is between y = x and y = 1. Thus, the lower limit of integration for variable y is y = x and the upper limit of integration for variable y is y = 1. And since $0 \le x \le 1$, we have

$$\int_{0}^{1} \int_{x}^{1} \int_{0}^{1-y^{2}} 1 \, dz \, dy \, dx = \frac{1}{4}.$$

order of integration: dzdxdy

In this case the limits of integration for variable z are the same as above: $0 \le z \le 1 - y^2$. Variable x is between x = 0 and x = y (see the graph). And $0 \le y \le 1$. Thus

$$\int_{0}^{1} \int_{0}^{y} \int_{0}^{1-y^{2}} 1 \, dz \, dx \, dy = \frac{1}{4}.$$

order of integration: dydzdx

Variable y is between the plane y = x and the cylinder $z = 1 - y^2$. From $z = 1 - y^2$, we have $y = \pm \sqrt{1-z}$, however, since $y \ge 0$, we must have $y = \sqrt{1-z}$. Therefore, the lower limit of integration for variable y is y = x and the upper limit of integration for variable y is $y = \sqrt{1-z}$.

For each such y, variable z varies between z = 0 and the intersection of the parabolic cylinder $z = 1 - y^2$ with the plane y = x, which is $z = 1 - x^2$. The lower limit of integration for variable z is z = 0 and the upper limit of integration for variable z is parabola $z = 1 - x^2$. Since $0 \le x \le 1$, we have

$$\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{x}^{\sqrt{1-z}} 1 \, dy \, dz \, dx = \frac{1}{4}.$$

order of integration: dydxdz

In this case the limits of integration for variable y are the same as above: $x \le y \le \sqrt{1-z}$. In xz plane, $R = \{(x, z) : 0 \le x \le 1, 0 \le z \le 1 - x^2\}$, has another representation: $R = \{(x, z) : 0 \le x \le \sqrt{1-z}, 0 \le z \le 1\}$. (*Check it!*) Therefore

$$\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{x}^{\sqrt{1-z}} 1 \, dy \, dx \, dz = \frac{1}{4}.$$

order of integration: dxdydz

Variable x varies between the plane x = 0 and the plane x = y. Therefore the lower limit of integration for variable x is x = 0 and the upper limit of integration for variable y is x = y. The region R in yz plane is $R = \{(y, z) : 0 \le y \le 1, 0 \le z \le 1 - y^2\}$. It has equivalent representation $R = \{(y, z) : 0 \le y \le \sqrt{1 - z}, 0 \le z \le 1\}$. Thus

$$\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{y} 1 \, dx \, dy \, dz = \frac{1}{4}$$

order of integration: dxdzdy

In this case the limits of integration for variable x are the same as above: $0 \le x \le y$. The region R in yz plane is $R = \{(y, z) : 0 \le y \le 1, 0 \le z \le 1 - y^2\}$. Therefore

$$\int_{0}^{1} \int_{0}^{1-y^{2}} \int_{0}^{y} 1 \, dx \, dz \, dy = \frac{1}{4}$$

Problem 3.

Write the integral $\int_{0}^{2} \int_{0}^{1} \int_{0}^{1-y} dz \, dy \, dx = 1$ in the other five possible orders of integration.

Solution

order of integration: dzdxdy

$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-y} dz \, dx \, dy = 1$$

order of integration: dydzdx

$$\int_{0}^{2} \int_{0}^{1} \int_{0}^{1-z} dy \, dz \, dx = 1$$

order of integration: dydxdz

$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-z} dy \, dx \, dz = 1$$

order of integration: dxdydz

$$\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{2} dx \, dy \, dz = 1$$

order of integration: dxdzdy

$$\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} dx \, dz \, dy = 1$$