# Triple integrals problems - Changing the order of integration <br> Math 250, Spring 2024 - Jacek Polewczak 

## Problem 1.

Let $D$ be the solid in the first octant bounded by the planes $y=0$, $z=0$, and $y=x$, and the cylinder $4 x^{2}+z^{2}=4$. Write the triple integral of $f(x, y, z)$ over $D$ in the given order of integration.


## Solution

## order of integration: dzdydx

From $4 x^{2}+z^{2}=4$, we obtain $z= \pm 2 \sqrt{1-x^{2}}$, also since $z \geq 0$ we must have $z=2 \sqrt{1-x^{2}}$. Thus, the lower limit of integration for $z$ is $z=0$ and the upper limit of integration is $z=2 \sqrt{1-x^{2}}$. Also, from $4 x^{2}+z^{2}=4$, we see that $x=1$ when $z=0$, and since $x \geq 0$, we must have $0 \leq x \leq 1$. Similarly for $y$ variable $(y \geq 0$ and for $x=1, y=x=1): 0 \leq y \leq 1$. Finally, from $4 x^{2}+z^{2}=4$ when $x=0$, we have $z= \pm 2$ and since $z \geq 0$, we have $0 \leq z \leq 2$.
Next, the projection of $D$ on $x y$-plane (i.e., when $z=0$ ) is the region $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}$.

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{2 \sqrt{1-x^{2}}} f(x, y, z) d z d y d x
$$

order of integration: dzdxdy
The limits of integration for $z$ are as before. Now, from $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}$, we see that $x \geq y$ and since $x \leq 1$, the lower limit of integration for variable $x$ is $x=y$ and the upper limit of integration for variable $x$ is $x=1$. Finally, $0 \leq y \leq 1$, thus

$$
\int_{0}^{1} \int_{y}^{1} \int_{0}^{2 \sqrt{1-x^{2}}} f(x, y, z) d z d x d y
$$

## order of integration: dydxdz

Variable $y$ is between the plane $y=0$ and the plane $y=x$, thus the lower limit of integration for variable $y$ is $y=0$ and the upper limit of integration is for variable $y$ is $y=x$. The projection of $D$ on the $x z$ plane (i.e., when $y=0$ ) is the region $R=\left\{(x, z): 0 \leq x \leq \frac{1}{2} \sqrt{4-z^{2}}, 0 \leq z \leq 2\right\}$, This region is the inside of the quarter of the elipse $4 x^{2}+z^{2}=4$ in the first quadrant of $x z$-coordinate system. Therefore

$$
\int_{0}^{2} \int_{0}^{\frac{1}{2} \sqrt{4-z^{2}}} \int_{0}^{x} f(x, y, z) d y d x d z
$$

## order of integration: dydzdx

The limits of integration for $y$ are the same as in the last case. The quarter of the elipse $4 x^{2}+z^{2}=4$ in the first quadrant of $x z$-coordinate system (i.e., the projection of $D$ on the $x z$ plane) can be also described as $R=\left\{(x, z): 0 \leq x \leq 1,0 \leq z \leq 2 \sqrt{1-x^{2}}\right\}$. Therefore,

$$
\int_{0}^{1} \int_{0}^{2 \sqrt{1-x^{2}}} \int_{0}^{x} f(x, y, z) d y d z d x
$$

order of integration: dxdydz
$x$ is between the plane $x=y$ and the cylinder $4 x^{2}+z^{2}=4$. In other words, $y \leq x \leq \frac{1}{2} \sqrt{4-z^{2}}$. Thus, the lower limit of integration for variable $x$ is $x=y$ and the upper limit of integration for variable $x$ is $x=\frac{1}{2} \sqrt{4-z^{2}}$. For each such $x$, variable $y$ also varies between $y=0$ and $y=\frac{1}{2} \sqrt{4-z^{2}}$, with $0 \leq z \leq 2$. Thus

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{\frac{1}{2} \sqrt{4-z^{2}}} \int_{y}^{\frac{1}{2} \sqrt{4-z^{2}}} f(x, y, z) d x d y d z \\
& \text { order of integration: dxdzdy }
\end{aligned}
$$

As in the last case, the lower limit of integration for variable $x$ is $x=y$ and the upper limit of integration for variable $x$ is $x=\frac{1}{2} \sqrt{4-z^{2}}$. Also $z$ is between $z=0$ and $z=2 \sqrt{1-x^{2}}$. Since $0 \leq y \leq x \leq 1$, we have $y^{2} \leq x^{2}$, consequently, $1-y^{2} \geq 1-x^{2}$, implying that $z=2 \sqrt{1-x^{2}} \leq 2 \sqrt{1-y^{2}}$. Therefore, the lower limit of integration for variable $z$ is $z=0$ and the upper limit of integration for variable $z$ is $z=2 \sqrt{1-y^{2}}$. Since $y$ varies between $y=0$ and $y=1$, we have

$$
\int_{0}^{1} \int_{0}^{2 \sqrt{1-y^{2}}} \int_{y}^{\frac{1}{2} \sqrt{4-z^{2}}} f(x, y, z) d x d z d y
$$

## Problem 2.

Let $D$ be the solid in the first octant bounded by $y=x, z=1-y^{2}$, $x=0$, and $z=0$. Write triple integrals over $D$ in all six possible orders of integration.


## Solution

Since $z=1-y^{2} \geq 0$, we have $0 \leq y \leq 1$, and $0 \leq z \leq 1$, Additionally, $x$ is between the plane $x=0$ and the plane $x=y$, and since $0 \leq y \leq 1$, we must have $0 \leq x \leq 1$.

## order of integration: dzdydx

$z$ is between $z=0$ and $z=1-y^{2}$, therefore, the lower limit of integration for variable $z$ is $z=0$ and the upper limit of integration for variable $z$ is $z=1-y^{2}$. Variable $y$ (see the graph) is between $y=x$ and $y=1$. Thus, the lower limit of integration for variable $y$ is $y=x$ and the upper limit of integration for variable $y$ is $y=1$. And since $0 \leq x \leq 1$, we have

$$
\int_{0}^{1} \int_{x}^{1} \int_{0}^{1-y^{2}} 1 d z d y d x=\frac{1}{4}
$$

order of integration: dzdxdy
In this case the limits of integration for variable $z$ are the same as above: $0 \leq z \leq 1-y^{2}$. Variable $x$ is between $x=0$ and $x=y$ (see the graph). And $0 \leq y \leq 1$. Thus

$$
\int_{0}^{1} \int_{0}^{y} \int_{0}^{1-y^{2}} 1 d z d x d y=\frac{1}{4}
$$

## order of integration: dydzdx

Variable $y$ is between the plane $y=x$ and the cylinder $z=1-y^{2}$. From $z=1-y^{2}$, we have $y= \pm \sqrt{1-z}$, however, since $y \geq 0$, we must have $y=\sqrt{1-z}$. Therefore, the lower limit of integration for variable $y$ is $y=x$ and the upper limit of integration for variable $y$ is $y=\sqrt{1-z}$.
For each such $y$, variable $z$ varies between $z=0$ and the intersection of the parabolic cylinder $z=1-y^{2}$ with the plane $y=x$, which is $z=1-x^{2}$. The lower limit of integration for variable $z$ is $z=0$ and the upper limit of integration for variable $z$ is parabola $z=1-x^{2}$. Since $0 \leq x \leq 1$, we have

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{x}^{\sqrt{1-z}} 1 d y d z d x=\frac{1}{4}
$$

order of integration: dydxdz
In this case the limits of integration for variable $y$ are the same as above: $x \leq y \leq \sqrt{1-z}$. In $x z$ plane, $R=\left\{(x, z): 0 \leq x \leq 1,0 \leq z \leq 1-x^{2}\right\}$, has another representation: $R=\{(x, z): 0 \leq x \leq \sqrt{1-z}, 0 \leq z \leq 1\}$. (Check it!) Therefore

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{x}^{\sqrt{1-z}} 1 d y d x d z=\frac{1}{4} \\
& \text { order of integration: dxdydz }
\end{aligned}
$$

Variable $x$ varies between the plane $x=0$ and the plane $x=y$. Therefore the lower limit of integration for variable $x$ is $x=0$ and the upper limit of integration for variable $y$ is $x=y$. The region $R$ in $y z$ plane is $R=$ $\left\{(y, z): 0 \leq y \leq 1,0 \leq z \leq 1-y^{2}\right\}$. It has equivalent representation $R=\{(y, z): 0 \leq y \leq \sqrt{1-z}, 0 \leq z \leq 1\}$. Thus

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{y} 1 d x d y d z=\frac{1}{4}
$$

## order of integration: dxdzdy

In this case the limits of integration for variable $x$ are the same as above: $0 \leq x \leq y$. The region $R$ in $y z$ plane is $R=\left\{(y, z): 0 \leq y \leq 1,0 \leq z \leq 1-y^{2}\right\}$. Therefore

$$
\int_{0}^{1} \int_{0}^{1-y^{2}} \int_{0}^{y} 1 d x d z d y=\frac{1}{4}
$$

## Problem 3.

Write the integral $\int_{0}^{2} \int_{0}^{1} \int_{0}^{1-y} d z d y d x=1$ in the other five possible orders of integration.


## Solution

order of integration: dzdxdy

$$
\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-y} d z d x d y=1
$$

order of integration: dydzdx

$$
\int_{0}^{2} \int_{0}^{1} \int_{0}^{1-z} d y d z d x=1
$$

order of integration: dydxdz

$$
\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-z} d y d x d z=1
$$

order of integration: dxdydz

$$
\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{2} d x d y d z=1
$$

order of integration: dxdzdy

$$
\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} d x d z d y=1
$$

