
Practice Problems II
Math 250, Spring 2024 – Jacek Polewczak

Problem 1.
Evaluate the indicated double integrals.

(a)
∫∫
R

xy
√

1 + x2 dA; R = {(x, y) : 0 ≤ x ≤
√

3, 1 ≤ y ≤ 2}

(b)
∫ 2

−2

∫ 1

−1
|x2y3| dydx,

(c)
∫∫
S

x dA; S is the region between y = x and y = x3. (Note that S has two parts.)

Solution

(a)
∫∫
R

xy
√

1 + x2 dA =
∫ 2

1

∫ √3

0
xy
√

1 + x2 dxdy =
∫ 2

1

[
1
3
y(1 + x2)

3
2

]x=
√

3

x=0
dy =

∫ 2

1

7
3
y dy =

[
7
6
y2
]2

1
= 3.5.

(b)
∫ 2

−2

∫ 1

−1
|x2y3| dydx =

∫ 2

−2

∫ 0

−1
|x2y3| dydx+

∫ 2

−2

∫ 1

0
|x2y3| dydx = −

∫ 2

−2

∫ 0

−1
x2y3 dydx+

∫ 2

−2

∫ 1

0
x2y3 dydx

= −
(∫ 2

−2
x2 dx

)(∫ 0

−1
y3 dy

)
+
(∫ 2

−2
x2 dx

)(∫ 1

0
y3 dy

)
= 2

(∫ 2

0
x2 dx

)
2
(∫ 1

0
y3 dy

)
= 2

(
8
3

)
2
(

1
4

)
= 8

3
.

(c) Since S is symmetric with respect to the origin and the integrand is an odd function in x, the value of
the integral is 0.
We can check it by the direct computation. Indeed,∫∫

S

x dA =
∫ 0

−1

(∫ x3

x

x dy

)
dx+

∫ 1

0

(∫ x

x3
x dy

)
dx =

∫ 0

−1
x

[
y

]y=x3

y=x
dx+

∫ 1

0
x

[
y

]y=x

y=x3
dx

=
∫ 0

−1
(x4 − x2) dx+

∫ 1

0
(x2 − x4) dx =

[
1
5
x5 − 1

3
x3
]0

−1
+
[

1
3
x3 − 1

5
x5
]1

0
=
(

1
5
− 1

3

)
+
(

1
3
− 1

5

)
= 0.

Problem 2.
Find the volumes of the indicated solids by an iterated integration.
(a) The tetrahedron bounded by the coordinate planes and the plane 3x+ 4y + z − 12 = 0.
(b) The solid bounded by the parabolic cylinder x2 = 4y and the planes z = 0 and 5y + 9z − 45 = 0.
Solution

(a) Volume =
∫ 4

0

[∫ (−3/4)x+3

0
(12− 3x− 4y) dy

]
dx = 24.

(b)
Solution 1
The plane 5y + 9z = 45 intersects the xy-plane in the line y = 9, so the region E (in xy plane) is

E = {(x, y, z) : −6 ≤ x ≤ 6, x2/4 ≤ y ≤ 9, 0 ≤ z ≤ 5− (5/9)y}
and

Volume =
6∫

−6

9∫
x2/4

5−(5/9)y∫
0

1 · dzdydx =
6∫

−6

9∫
x2/4

(
5− 5

9
y

)
dydx = 144.

1



2

Solution 2
The plane 5y + 9z = 45 intersects the xy-plane in the line y = 9, so the region E (in xy plane) is

E = {(x, y, z) : −2√y ≤ x ≤ 2√y, 0 ≤ y ≤ 9, 0 ≤ z ≤ 5− (5/9)y}
and

Volume =
9∫

0

2√y∫
−2√y

5−(5/9)y∫
0

1 · dzdxdy =
9∫

0

2√y∫
−2√y

(
5− 5

9
y

)
dxdy = 144.

Problem 3.
S is the smaller region bounded by θ = π/6 and r = 4 sin θ. Find the area of the region S by calculating∫∫
S

r drdθ.

Solution

Area =
∫ π/6

0

[∫ 4 sin θ

0
r dr

]
dθ =

∫ π/6

0

[
r2

2

]r=4 sin θ

r=0
dθ

=
∫ π/6

0
8 sin2 θ dθ =

∫ π/6

0
4(1− cos 2θ) dθ

=
[
4θ − 2 sin 2θ

]π/6

0
= 2

3
π −
√

3 ≈ 0.3623.

Problem 4.
Evaluate the following double integral by using polar coordinates∫∫

S

√
4− x2 − y2 dA,

where S is the first quadrant sector of the circle x2 + y2 = 4 between y = 0 and y = x.
Solution ∫ π/4

0

[∫ 2

0
(4− r2)1/2r dr

]
dθ =

∫ π/4

0

[
−(4− r2)3/2

3

]r=2

r=0
dθ

=
∫ π/4

0

8
3
dθ =

[
8θ
3

]π/4

0
= 2π

3
≈ 2.0944.

Problem 5.
Find the volume of the solid lying under the graph of z = f(x, y) = x3 + 4y and above the region R in the
xy-plane bounded by the line y = 2x and the parabola y = x2.
Solution
The region R is

R = {(x, y) : 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x}.
Therefore

V =
∫∫
R

f(x, y) dA =
2∫

0

2x∫
x2

(x3 + 4y) dydx =
2∫

0

[
x3y + 2y2]y=2x

y=x2 dx =
2∫

0

[
(2x4 + 8x2)− (x5 + 2x4)

]
dx

=
2∫

0

(8x2 − x5) dx =
[

8
3
x3 − 1

6
x5
]2

0
= 32

3
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Alternative Solution
One can also look at the region R as::

R = {(x, y) : 0 ≤ y ≤ 4, y
2
≤ x ≤ √y}.

Then

V =
∫∫
R

f(x, y) dA =
4∫

0

√
y∫

y/2

(x3 + 4y) dxdy =
4∫

0

[
1
4
x4 + 4xy

]x=√y

x=y/2
dy

=
4∫

0

[(
1
4
y2 + 4y3/2

)
−
(

1
64
y4 + 2y2 + 2x4

)]
dx

=
4∫

0

(
−7

4
y2 + 4y3/2 − 1

64
y4
)
dy =

[
− 7

12
y3 + 8

5
y5/2 − 1

320
y5
]4

0
= 32

3
.

Problem 6.
Evaluate

∫∫
R

(2x− y) dA, when R is the region bounded by the parabola x = y2 and the line x− y = 2.
Solution
The region R is

R = {(x, y) : −1 ≤ y ≤ 2, y2 ≤ x ≤ y + 2}
and∫∫

R

(2x− y) dA =
2∫

−1

y+2∫
y2

(2x− y) dxdy =
2∫

−1

[
x2 − xy

]x=y+2
x=y2 dy =

2∫
−1

[
(y + 2)2 − y(y + 2)

]
−
[
y4 − y3] dx

=
2∫

−1

(4 + 2y + y3 − y4) dy =
[
4y + y2 + 1

4
y4 − 1

5
y5
]2

−1
= 233

20
.

Alternative Solution
We can also write ∫∫

R

(2x− y) dA =
1∫

0

√
x∫

−
√
x

(2x− y) dydx+
4∫

1

√
x∫

x−2

(2x− y) dydx.

Problem 7.
Evaluate

1∫
0

1∫
y

sinx
x

dxdy.

Solution
The integral ∫

sinx
x

dx

cannot be evaluated in terms of elementary functions. We attempt to evaluate the original integral by reversing
the order of integration. We have

1∫
0

1∫
y

sinx
x

dxdy =
∫∫
R

sinx
x

dA,
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where
R = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1}.

However, by viewing the region R as
R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x},

we have
1∫

0

1∫
y

sinx
x

dxdy =
∫∫
R

sinx
x

dA =
1∫

0

x∫
0

sinx
x

dydx =
1∫

0

[
y sinx
x

]y=x

y=0
dx =

1∫
0

sinx dx = [− cosx]10 = − cos 1+1.

Problem 8.
Evaluate

1∫
0

1∫
x

sin(y2) dydx.

Solution
The integral ∫

sin(y2) dy

cannot be evaluated in terms of elementary functions. We attempt to evaluate the original integral by reversing
the order of integration. We have

1∫
0

1∫
x

sin(y2) dydx =
∫∫
R

sin(y2) dA,

where
R = {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ 1}.

However, by viewing the region R as
R = {(x, y) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y},

we have
1∫

0

1∫
x

sin(y2) dydx =
∫∫
R

sin(y2) dA =
1∫

0

y∫
0

sin(y2) dxdy =
1∫

0

[
x sin(y2)

]x=y
x=0 dy

=
1∫

0

y sin(y2) dy =
[
−1

2
cos(y2)

]1

0
= 1

2
(1− cos 1).

Problem 9.
Evaluate

∫∫
R

(2x+ 3y) dA, where R is the region in the first quadrant bounded by x2 + y2 = 1 and x2 + y2 = 4.
Solution
the region R is a polar rectangular

R = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π/2}.
Thus,∫∫
R

(2x+ 3y) dA =
π/2∫
0

2∫
1

(2r cos θ + 3r sin θ)r drdθ =
π/2∫
0

[
2
3
r3 cos θ + r3 sin θ

]r=2

r=1
dθ =

π/2∫
0

(
14
3

cos θ + 7 sin θ
)
dθ

=
[

14
3

sin θ − 7 cos θ
]π/2

0
= 35

3
.
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Problem 10.
Use a double integral to find the area enclosed by one loop of the three-leaved rose r = sin(3θ).
Solution
A loop of the rose is described by the region

R = {(r, θ) : 0 ≤ θ ≤ π/3, 0 ≤ r ≤ sin(3θ)}.

Thus

A =
∫∫
R

1 dA =
π/3∫
0

sin(3θ)∫
0

r drθ =
π/3∫
0

[
1
2
r2
]r=sin(3θ)

r=0
dθ = 1

2

π/3∫
0

sin2(3θ) dθ = 1
4

π/3∫
0

(1− cos(6θ)) dθ

= 1
4

[
θ − 1

6
sin(6θ)

]θ=π/3

θ=0
= π

12
.

Problem 11.
Evaluate the integral

∞∫
−∞

exp(−x2) dx.

The integral ∫
exp(−x2) dx

cannot be evaluated in terms of elementary functions. Switching to the polar coordinates will help. First, we
notice that if A =

∞∫
−∞

exp(−x2) dx then

∞∫
−∞

∞∫
−∞

exp(−x2 − y2) dxdy = A2. (Do you know why? )

Next,
∞∫

−∞

∞∫
−∞

exp(−x2 − y2) dxdy = lim
a→∞

a∫
0

2π∫
0

exp(−r2)r drdθ = lim
a→∞

2π
[
−1

2
exp(−r2)

]r=a
r=0

= 2π lim
a→∞

[
−1

2
exp(−a2) + 1

2

]

= 2π1
2

= π.

Thus
∞∫

−∞

exp(−x2) dx =
√
π.

Problem 12.
Evaluate

∫∫∫
E
yz dV , where E is the solid tetrahedron bounded by the four planes

x = 0, y = 0, z = 0, x+ y + z = 1.
Solution
The lower boundary of the tetrahedron is the plane z = 0 and the upper boundary is the plane x+ y + z = 1,
or z = 1− x− y. Next, we observe that the planes x+ y + z = 1 and z = 0 intersect in the line x+ y = 1 (or
y = 1− x) in the xy-plane. So the projection of E onto xy-plane is the region R

R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}.
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Therefore∫∫∫
E

yz dV =
∫∫
R

 1−x−y∫
0

yz dz

 dA =
1∫

0

1−x∫
0

1−x−y∫
0

yz dzdydx =
1∫

0

1−x∫
0

[
1
2
yz2
]z=1−x−y

z=0
dydx

=
1∫

0

1−x∫
0

1
2
y(1− x− y)2 dydx =

1∫
0

1−x∫
0

(
1
2
x2y + xy2 + 1

2
y3 − xy − y2 + 1

2
y

)
dydx

=
1∫

0

[
− 5

24
(1− x)4 + (1− x)2

(
1
4
x2 − 1

2
x+ 1

4

)]
dx = 1

120
.


