Practice Problems II

Math 250, Spring 2024 - Jacek Polewczak

Problem 1.

Evaluate the indicated double integrals.
(a) $\iint_{R} x y \sqrt{1+x^{2}} d A ; \quad R=\{(x, y): 0 \leq x \leq \sqrt{3}, 1 \leq y \leq 2\}$

$$
\text { (b) } \int_{-2}^{2} \int_{-1}^{1}\left|x^{2} y^{3}\right| d y d x
$$

(c) $\iint_{S} x d A ; \quad S$ is the region between $y=x$ and $y=x^{3} . \quad$ (Note that S has two parts.)

Solution

(a) $\iint_{R} x y \sqrt{1+x^{2}} d A=\int_{1}^{2} \int_{0}^{\sqrt{3}} x y \sqrt{1+x^{2}} d x d y=\int_{1}^{2}\left[\frac{1}{3} y\left(1+x^{2}\right)^{\frac{3}{2}}\right]_{x=0}^{x=\sqrt{3}} d y=\int_{1}^{2} \frac{7}{3} y d y=\left[\frac{7}{6} y^{2}\right]_{1}^{2}=3.5$.
(b)

$$
\begin{aligned}
& \int_{-2}^{2} \int_{-1}^{1}\left|x^{2} y^{3}\right| d y d x=\int_{-2}^{2} \int_{-1}^{0}\left|x^{2} y^{3}\right| d y d x+\int_{-2}^{2} \int_{0}^{1}\left|x^{2} y^{3}\right| d y d x=-\int_{-2}^{2} \int_{-1}^{0} x^{2} y^{3} d y d x+\int_{-2}^{2} \int_{0}^{1} x^{2} y^{3} d y d x \\
= & -\left(\int_{-2}^{2} x^{2} d x\right)\left(\int_{-1}^{0} y^{3} d y\right)+\left(\int_{-2}^{2} x^{2} d x\right)\left(\int_{0}^{1} y^{3} d y\right)=2\left(\int_{0}^{2} x^{2} d x\right) 2\left(\int_{0}^{1} y^{3} d y\right)=2\left(\frac{8}{3}\right) 2\left(\frac{1}{4}\right)=\frac{8}{3} .
\end{aligned}
$$

(c) Since S is symmetric with respect to the origin and the integrand is an odd function in x, the value of the integral is 0 .
We can check it by the direct computation. Indeed,

$$
\begin{aligned}
& \iint_{S} x d A=\int_{-1}^{0}\left(\int_{x}^{x^{3}} x d y\right) d x+\int_{0}^{1}\left(\int_{x^{3}}^{x} x d y\right) d x=\int_{-1}^{0} x[y]_{y=x}^{y=x^{3}} d x+\int_{0}^{1} x[y]_{y=x^{3}}^{y=x} d x \\
& =\int_{-1}^{0}\left(x^{4}-x^{2}\right) d x+\int_{0}^{1}\left(x^{2}-x^{4}\right) d x=\left[\frac{1}{5} x^{5}-\frac{1}{3} x^{3}\right]_{-1}^{0}+\left[\frac{1}{3} x^{3}-\frac{1}{5} x^{5}\right]_{0}^{1}=\left(\frac{1}{5}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)=0
\end{aligned}
$$

Problem 2.

Find the volumes of the indicated solids by an iterated integration.
(a) The tetrahedron bounded by the coordinate planes and the plane $3 x+4 y+z-12=0$.
(b) The solid bounded by the parabolic cylinder $x^{2}=4 y$ and the planes $z=0$ and $5 y+9 z-45=0$.

Solution

$$
\text { (a) } \quad \text { Volume }=\int_{0}^{4}\left[\int_{0}^{(-3 / 4) x+3}(12-3 x-4 y) d y\right] d x=24
$$

(b)

Solution 1

The plane $5 y+9 z=45$ intersects the $x y$-plane in the line $y=9$, so the region E (in $x y$ plane) is

$$
E=\left\{(x, y, z):-6 \leq x \leq 6, x^{2} / 4 \leq y \leq 9,0 \leq z \leq 5-(5 / 9) y\right\}
$$

and

$$
\text { Volume }=\int_{-6}^{6} \int_{x^{2} / 4}^{9} \int_{0}^{5-(5 / 9) y} 1 \cdot d z d y d x=\int_{-6}^{6} \int_{x^{2} / 4}^{9}\left(5-\frac{5}{9} y\right) d y d x=144
$$

Solution 2

The plane $5 y+9 z=45$ intersects the $x y$-plane in the line $y=9$, so the region E (in $x y$ plane) is

$$
E=\{(x, y, z):-2 \sqrt{y} \leq x \leq 2 \sqrt{y}, 0 \leq y \leq 9,0 \leq z \leq 5-(5 / 9) y\}
$$

and

$$
\text { Volume }=\int_{0}^{9} \int_{-2 \sqrt{y}}^{2 \sqrt{y}} \int_{0}^{5-(5 / 9) y} 1 \cdot d z d x d y=\int_{0}^{9} \int_{-2 \sqrt{y}}^{2 \sqrt{y}}\left(5-\frac{5}{9} y\right) d x d y=144 .
$$

Problem 3.

S is the smaller region bounded by $\theta=\pi / 6$ and $r=4 \sin \theta$. Find the area of the region S by calculating $\iint_{S} r d r d \theta$.

Solution

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 6}\left[\int_{0}^{4 \sin \theta} r d r\right] d \theta=\int_{0}^{\pi / 6}\left[\frac{r^{2}}{2}\right]_{r=0}^{r=4 \sin \theta} d \theta \\
& =\int_{0}^{\pi / 6} 8 \sin ^{2} \theta d \theta=\int_{0}^{\pi / 6} 4(1-\cos 2 \theta) d \theta \\
& =[4 \theta-2 \sin 2 \theta]_{0}^{\pi / 6}=\frac{2}{3} \pi-\sqrt{3} \approx 0.3623
\end{aligned}
$$

Problem 4.

Evaluate the following double integral by using polar coordinates

$$
\iint_{S} \sqrt{4-x^{2}-y^{2}} d A
$$

where S is the first quadrant sector of the circle $x^{2}+y^{2}=4$ between $y=0$ and $y=x$.

Solution

$$
\begin{aligned}
& \int_{0}^{\pi / 4}\left[\int_{0}^{2}\left(4-r^{2}\right)^{1 / 2} r d r\right] d \theta=\int_{0}^{\pi / 4}\left[-\frac{\left(4-r^{2}\right)^{3 / 2}}{3}\right]_{r=0}^{r=2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{8}{3} d \theta=\left[\frac{8 \theta}{3}\right]_{0}^{\pi / 4}=\frac{2 \pi}{3} \approx 2.0944
\end{aligned}
$$

Problem 5.

Find the volume of the solid lying under the graph of $z=f(x, y)=x^{3}+4 y$ and above the region R in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.

Solution

The region R is

$$
R=\left\{(x, y): 0 \leq x \leq 2, x^{2} \leq y \leq 2 x\right\}
$$

Therefore

$$
\begin{aligned}
V=\iint_{R} f(x, y) d A & =\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{3}+4 y\right) d y d x=\int_{0}^{2}\left[x^{3} y+2 y^{2}\right]_{y=x^{2}}^{y=2 x} d x=\int_{0}^{2}\left[\left(2 x^{4}+8 x^{2}\right)-\left(x^{5}+2 x^{4}\right)\right] d x \\
& =\int_{0}^{2}\left(8 x^{2}-x^{5}\right) d x=\left[\frac{8}{3} x^{3}-\frac{1}{6} x^{5}\right]_{0}^{2}=\frac{32}{3}
\end{aligned}
$$

Alternative Solution

One can also look at the region R as::

$$
R=\left\{(x, y): 0 \leq y \leq 4, \frac{y}{2} \leq x \leq \sqrt{y}\right\}
$$

Then

$$
\begin{aligned}
V=\iint_{R} f(x, y) d A & =\int_{0}^{4} \int_{y / 2}^{\sqrt{y}}\left(x^{3}+4 y\right) d x d y=\int_{0}^{4}\left[\frac{1}{4} x^{4}+4 x y\right]_{x=y / 2}^{x=\sqrt{y}} d y \\
& =\int_{0}^{4}\left[\left(\frac{1}{4} y^{2}+4 y^{3 / 2}\right)-\left(\frac{1}{64} y^{4}+2 y^{2}+2 x^{4}\right)\right] d x \\
& =\int_{0}^{4}\left(-\frac{7}{4} y^{2}+4 y^{3 / 2}-\frac{1}{64} y^{4}\right) d y=\left[-\frac{7}{12} y^{3}+\frac{8}{5} y^{5 / 2}-\frac{1}{320} y^{5}\right]_{0}^{4}=\frac{32}{3} .
\end{aligned}
$$

Problem 6.

Evaluate $\iint_{R}(2 x-y) d A$, when R is the region bounded by the parabola $x=y^{2}$ and the line $x-y=2$.

Solution

The region R is

$$
R=\left\{(x, y):-1 \leq y \leq 2, y^{2} \leq x \leq y+2\right\}
$$

and

$$
\begin{aligned}
\iint_{R}(2 x-y) d A & =\int_{-1}^{2} \int_{y^{2}}^{y+2}(2 x-y) d x d y=\int_{-1}^{2}\left[x^{2}-x y\right]_{x=y^{2}}^{x=y+2} d y=\int_{-1}^{2}\left[(y+2)^{2}-y(y+2)\right]-\left[y^{4}-y^{3}\right] d x \\
& =\int_{-1}^{2}\left(4+2 y+y^{3}-y^{4}\right) d y=\left[4 y+y^{2}+\frac{1}{4} y^{4}-\frac{1}{5} y^{5}\right]_{-1}^{2}=\frac{233}{20}
\end{aligned}
$$

Alternative Solution

We can also write

$$
\iint_{R}(2 x-y) d A=\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}}(2 x-y) d y d x+\int_{1}^{4} \int_{x-2}^{\sqrt{x}}(2 x-y) d y d x
$$

Problem 7.

Evaluate

$$
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y
$$

Solution

The integral

$$
\int \frac{\sin x}{x} d x
$$

cannot be evaluated in terms of elementary functions. We attempt to evaluate the original integral by reversing the order of integration. We have

$$
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y=\iint_{R} \frac{\sin x}{x} d A
$$

where

$$
R=\{(x, y): 0 \leq y \leq 1, y \leq x \leq 1\}
$$

However, by viewing the region R as

$$
R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}
$$

we have
$\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y=\iint_{R} \frac{\sin x}{x} d A=\int_{0}^{1} \int_{0}^{x} \frac{\sin x}{x} d y d x=\int_{0}^{1}\left[\frac{y \sin x}{x}\right]_{y=0}^{y=x} d x=\int_{0}^{1} \sin x d x=[-\cos x]_{0}^{1}=-\cos 1+1$.

Problem 8.

Evaluate

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x
$$

Solution

The integral

$$
\int \sin \left(y^{2}\right) d y
$$

cannot be evaluated in terms of elementary functions. We attempt to evaluate the original integral by reversing the order of integration. We have

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x=\iint_{R} \sin \left(y^{2}\right) d A
$$

where

$$
R=\{(x, y): 0 \leq x \leq 1, x \leq y \leq 1\}
$$

However, by viewing the region R as

$$
R=\{(x, y): 0 \leq y \leq 1,0 \leq x \leq y\}
$$

we have

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x & =\iint_{R} \sin \left(y^{2}\right) d A=\int_{0}^{1} \int_{0}^{y} \sin \left(y^{2}\right) d x d y=\int_{0}^{1}\left[x \sin \left(y^{2}\right)\right]_{x=0}^{x=y} d y \\
& =\int_{0}^{1} y \sin \left(y^{2}\right) d y=\left[-\frac{1}{2} \cos \left(y^{2}\right)\right]_{0}^{1}=\frac{1}{2}(1-\cos 1) .
\end{aligned}
$$

Problem 9.

Evaluate $\iint_{R}(2 x+3 y) d A$, where R is the region in the first quadrant bounded by $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Solution

the region R is a polar rectangular

$$
R=\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi / 2\}
$$

Thus,

$$
\begin{aligned}
\iint_{R}(2 x+3 y) d A & =\int_{0}^{\pi / 2} \int_{1}^{2}(2 r \cos \theta+3 r \sin \theta) r d r d \theta=\int_{0}^{\pi / 2}\left[\frac{2}{3} r^{3} \cos \theta+r^{3} \sin \theta\right]_{r=1}^{r=2} d \theta=\int_{0}^{\pi / 2}\left(\frac{14}{3} \cos \theta+7 \sin \theta\right) d \theta \\
& =\left[\frac{14}{3} \sin \theta-7 \cos \theta\right]_{0}^{\pi / 2}=\frac{35}{3}
\end{aligned}
$$

Problem 10.

Use a double integral to find the area enclosed by one loop of the three-leaved rose $r=\sin (3 \theta)$.

Solution

A loop of the rose is described by the region

$$
R=\{(r, \theta): 0 \leq \theta \leq \pi / 3,0 \leq r \leq \sin (3 \theta)\} .
$$

Thus

$$
\begin{aligned}
A=\iint_{R} 1 d A & =\int_{0}^{\pi / 3} \int_{0}^{\sin (3 \theta)} r d r \theta=\int_{0}^{\pi / 3}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=\sin (3 \theta)} d \theta=\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta=\frac{1}{4} \int_{0}^{\pi / 3}(1-\cos (6 \theta)) d \theta \\
& =\frac{1}{4}\left[\theta-\frac{1}{6} \sin (6 \theta)\right]_{\theta=0}^{\theta=\pi / 3}=\frac{\pi}{12}
\end{aligned}
$$

Problem 11.

Evaluate the integral

$$
\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x
$$

The integral

$$
\int \exp \left(-x^{2}\right) d x
$$

cannot be evaluated in terms of elementary functions. Switching to the polar coordinates will help. First, we notice that if $A=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x$ then

$$
\left.\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-x^{2}-y^{2}\right) d x d y=A^{2} . \quad \text { (Do you know why? }\right)
$$

Next,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-x^{2}-y^{2}\right) d x d y & =\lim _{a \rightarrow \infty} \int_{0}^{a} \int_{0}^{2 \pi} \exp \left(-r^{2}\right) r d r d \theta=\lim _{a \rightarrow \infty} 2 \pi\left[-\frac{1}{2} \exp \left(-r^{2}\right)\right]_{r=0}^{r=a}=2 \pi \lim _{a \rightarrow \infty}\left[-\frac{1}{2} \exp \left(-a^{2}\right)+\frac{1}{2}\right] \\
& =2 \pi \frac{1}{2}=\pi
\end{aligned}
$$

Thus

$$
\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x=\sqrt{\pi}
$$

Problem 12.

Evaluate $\iiint_{E} y z d V$, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0, x+y+z=1$.

Solution

The lower boundary of the tetrahedron is the plane $z=0$ and the upper boundary is the plane $x+y+z=1$, or $z=1-x-y$. Next, we observe that the planes $x+y+z=1$ and $z=0$ intersect in the line $x+y=1$ (or $y=1-x)$ in the $x y$-plane. So the projection of E onto $x y$-plane is the region R

$$
R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x\}
$$

Therefore

$$
\begin{aligned}
\iiint_{E} y z d V & =\iint_{R}\left[\int_{0}^{1-x-y} y z d z\right] d A=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} y z d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[\frac{1}{2} y z^{2}\right]_{z=0}^{z=1-x-y} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{1}{2} y(1-x-y)^{2} d y d x=\int_{0}^{1} \int_{0}^{1-x}\left(\frac{1}{2} x^{2} y+x y^{2}+\frac{1}{2} y^{3}-x y-y^{2}+\frac{1}{2} y\right) d y d x \\
& =\int_{0}^{1}\left[-\frac{5}{24}(1-x)^{4}+(1-x)^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+\frac{1}{4}\right)\right] d x=\frac{1}{120} .
\end{aligned}
$$

