Problem 1.
Evaluate the indicated double integrals.

$$
\begin{aligned}
& \text { (a) } \iint_{R} x y \sqrt{1+x^{2}} d A ; \quad R=\{(x, y): 0 \leq x \leq \sqrt{3}, 1 \leq y \leq 2\} \\
& \text { (b) } \int_{-2}^{2} \int_{-1}^{1}\left|x^{2} y^{3}\right| d y d x \\
& \text { (c) } \iint_{S} x d A ; \quad S \text { is the region between } y=x \text { and } y=x^{3} . \quad \text { (Note that } S \text { has two parts.) }
\end{aligned}
$$

Problem 2.

Find the volumes of the indicated solids by an iterated integration.
(a) The tetrahedron bounded by the coordinate planes and the plane $3 x+4 y+z-12=0$.
(b) The solid bounded by the parabolic cylinder $x^{2}=4 y$ and the planes $z=0$ and $5 y+9 z-45=0$.

Problem 3.

S is the smaller region bounded by $\theta=\pi / 6$ and $r=4 \sin \theta$. Find the area of the region S by calculating $\iint_{S} r d r d \theta$.
Problem 4.
Evaluate the following double integral by using polar coordinates

$$
\iint_{S} \sqrt{4-x^{2}-y^{2}} d A
$$

where S is the first quadrant sector of the circle $x^{2}+y^{2}=4$ between $y=0$ and $y=x$.
Problem 5.
Find the volume of the solid lying under the graph of $z=f(x, y)=x^{3}+4 y$ and above the region R in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
Problem 6.
Evaluate $\iint_{R}(2 x-y) d A$, when R is the region bounded by the parabola $x=y^{2}$ and the line $x-y=2$.
Problem 7.
Evaluate

$$
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y
$$

Problem 8.

Evaluate

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x
$$

Problem 9.
Evaluate $\iint_{R}(2 x+3 y) d A$, where R is the region in the first quadrant bounded by $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
Problem 10.
Use a double integral to find the area enclosed by one loop of the three-leaved rose $r=\sin (3 \theta)$.
Problem 11.
Evaluate the integral

$$
\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x
$$

Problem 12.
Evaluate $\iiint_{E} y z d V$, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0, x+y+z=1$.

