Solutions to Practice Problems I
 Math 250, Spring 2024 - Jacek Polewczak

Problem 1.

Let $\mathbf{v}=\langle a, b, c\rangle$ be a vector perpendicular to $\langle 4,3,6\rangle$ and $\langle-2,-3,-2\rangle$. Then

$$
<a, b, c>\cdot<4,3,6>=0 \quad \text { and } \quad<a, b, c>\cdot<-2,-3,-2>=0
$$

Therefore, $4 a+3 b+6 c=0$ and $-2 a-3 b-2 c=0$. This pair of equations for a, b, and c has infinitely many solutions. For example, with $c=3$, we can solve the equations for a and b. The result is $a=-6$ and $b=2$. Thus, vector $\langle-6,2,3\rangle$, which has length 7 , is perpendicular to $\langle 4,3,6\rangle$ and $<-2,-3,-2\rangle$. Then the required vectors are:

$$
\left(\frac{10}{7}\right)<-6,2,3>\quad \text { and } \quad\left(\frac{-10}{7}\right)<-6,2,3>
$$

Note: Any choice of $c \neq 0$ in $4 a+3 b+6 c=0$ and in $-2 a-3 b-2 c=0$ works. On the other hand, $c=0$ leads to the equations $4 a+3 b=0$ and $2 a+3 b=0$ without solutions.

Problem 2.

Normals to the planes are $\langle 3,-2,5\rangle$ and $\langle 4,-2,-3\rangle$, so the cosine of the smaller angle is

$$
\cos \theta=\frac{|12+4-15|}{(38)^{1 / 2}(29)^{1 / 2}}=\frac{1}{\sqrt{1102}}
$$

Thus, the angle $\theta=1.540668$ radians or $\theta=88.27^{\circ}$. Note that with

$$
\cos \theta=\frac{12+4-15}{(38)^{1 / 2}(29)^{1 / 2}}=-\frac{1}{\sqrt{1102}}
$$

$\theta=1.600925$ radians or $\theta=91.73^{\circ}$.

Problem 3.

Suppose $P(x, y, z)$ is a point in the plane $a x+b y+c z+d=0$. The distance from any point $Q\left(x_{0}, y_{0}, z_{0}\right)$ to the plane equals the length of the orthogonal projection of the vector $\overrightarrow{P Q}$ onto a vector $\mathbf{n}=<a, b, c>$ normal to the plane, which is

$$
\frac{|\overrightarrow{P Q} \cdot \mathbf{n}|}{|\mathbf{n}|}=\frac{\left|a x_{0}+b x_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

The point $(0,0,9)$ belongs to the plane $-3 x+2 y+z=9$. The distance between the parallel planes $-3 x+2 y+z=9$ and $6 x-4 y-2 z=19$ is

$$
\frac{|6(0)-4(0)-2(9)-19|}{(36+16+4)^{1 / 2}}=\frac{37}{\sqrt{56}} \approx 4.9443
$$

Problem 4.

The line segment between the points is perpendicular to the plane. Its midpoint, $(2,1,1)$, belongs to the plane we are looking for. Then, vector $<6-(-2), 1-1,-2-4>=<8,0,-6>$ is perpendicular to the plane. Therefore, $8(x-2)+0(y-1)-6(z-1)=0$ or $4 x-3 z=5$ is the equation of the plane.

Problem 5.

Two vectors in the plane are

$$
<4-(-1),-2-(-2), 1-(-3)>=<5,0,4>
$$

and

$$
<5-4,1-(-2), 6-1>=<1,3,5>
$$

A vector normal to the plane is $\langle 5,0,4>\times<1,3,5>=<-12,-21,15>=-3<4,7,-5>$. Therefore, an equation of the lane is $4(x+1)+7(y+2)-5(x+3)=0$ or $4 x+7 y-5 z=-3$.

Problem 6.

The cross product of vectors normal to those planes is parallel to the line of intersection of the planes. Thus, a normal vector to the plane we seek is $\langle 4,-3,2\rangle \times<3,2,-1\rangle=<-1,10,17\rangle$. Equation of the plane is $-1(x-6)+10(y-2)+17(z+1)=0$ or $x-10 y-17 z=3$.

Problem 7.

Parametric equation: $\quad x=-1+4 t, y=3+2 t, z=2-t$.

Problem 8.

(a) $P(1,-1,0)$ is on the line and so are vectors $\mathbf{P Q}=<1,0,3>$ and $\mathbf{a}=<2,3,-6>$. Then

$$
d=\frac{|\mathbf{P Q} \times \mathbf{a}|}{|\mathbf{a}|}=\frac{|<-9,12,3>|}{\sqrt{4+9+36}}=\frac{3 \sqrt{26}}{7} \approx 2.1853 . \quad \text { (see page } 847 \text { of the textbook) }
$$

(b) $P(1,-2,0)$ and $Q(0,1,0)$ are on the lines $x=1+2 t, y=-2+3 t, z=-4 t$ and $x=3 t, y=1+t, z=-5 t$, respectively. Now, the length of the projection vector of $\mathbf{P Q}=<-1,3,0>$ on vector

$$
\mathbf{n}=\mathbf{a} \times \mathbf{b}=<2,3,-4>\times<3,1,-5>=<-11,-2,-7>
$$

is the distance between these skew lines. Indeed, vector \mathbf{n} is perpendicular to both lines. Therefore,

$$
d=\frac{|\mathbf{P Q} \cdot \mathbf{n}|}{|\mathbf{n}|}=\frac{|\mathbf{P Q} \cdot(\mathbf{a} \times \mathbf{b})|}{|\mathbf{a} \times \mathbf{b}|}=\frac{|<-1,3,0>\cdot<-11,-2,-7>|}{|<-11,-2,-7>|}=\frac{5}{\sqrt{174}} \approx 0.3790
$$

Problem 9.

$$
\frac{d}{d t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t)=\mathbf{r}(t) \times c \mathbf{r}(t)=c[\mathbf{r}(t) \times \mathbf{r}(t)]=0
$$

Integrating both sides with respect to t, we obtain $\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)=\mathbf{c}$, a constant vector (independent of t). Therefore, $\mathbf{r}(t)$ is perpendicular to the vector \mathbf{c} for each value of t, so the path is in a plane (whose normal is vector \mathbf{c}).

Problem 10.

The natural domain is the subset of \mathbf{R}^{2}

$$
\begin{aligned}
D & =\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1, \frac{x}{y} \geq 0\right\} \\
& =\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1, x \geq 0, y>0\right\} \cup\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1, x \leq 0, y<0\right\}
\end{aligned}
$$

Problem 11.

(a) $\quad f(x, y)=\ln \left(1-x^{2}-y^{2}\right)=g(h(x, y))$, where $g(t)=\ln t$ and $h(x, y)=1-x^{2}-y^{2}$. Functions $g(t)$ and $h(x, y)$ are continuous for $t>0$ and $(x, y) \in \mathbf{R}^{2}$, respectively. Therefore, $f(x, y)$ being a composition of g and h is continuous on the domain $S=\left\{(x, y) \in \mathbf{R}^{2}: 1-x^{2}-y^{2}>0\right\}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1\right\}$ (inside of the circle with radius 1 centered at the origin).
(b) When $x y \neq 0, \sin (x y) / x y$ is a quotient of two continuous functions. Indeed, both $\sin t$ and $x y$ are continuous functions on \mathbf{R} and \mathbf{R}^{2}, respectively. Therefore, the only suspicious point is $(0,0)$. However, we know that $\lim _{z \rightarrow 0} \frac{\sin z}{z}=1$, thus

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x y}=1
$$

Since $f(0,0)=1$, the definition of continuity implies that $f(x, y)$ is continuous also at $(0,0)$. Thus, the function is continuous for $(x, y) \in \mathbf{R}^{2}$, i.e., $S=\mathbf{R}^{2}$.
(c) The function is a quotient of two polynomials. It is continuous for all $(x, y) \in \mathbf{R}^{2}$ except at the points where the denominator is zero. The denominator is zero on the set $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=9\right\}$ (the circle with radius 3 centered at the origin). The set $S=\mathbf{R}^{2} \backslash\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=9\right\}$ (the whole plane except for the circle with radius 3 centered at the origin).

Problem 12.

We let $(x, y) \rightarrow(0,0)$ along any non-vertical line through the origin. Then $y=m x$, where m is the slope and $f(x, y)=f(x, m x)=\frac{m^{2} x}{1+m^{2} x^{2}}$. So, $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow 0$ along $y=m x$. On a the vertical line through the origin $x=0$ and $f(0, y)=0$, for $y \neq 0$. Thus $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow 0$ along a vertical line. In spite of the fact that $f(x, y) \rightarrow 0$ along any line through the origin, it does NOT show that the given limit is 0 . Indeed, if we let $(x, y) \rightarrow(0,0)$ along the parabola $x=y^{2}$, we have

$$
f(x, y)=f\left(y^{2}, y\right)=\frac{y^{4}}{2 y^{4}}=\frac{1}{2}
$$

so $f(x, y) \rightarrow \frac{1}{2}$ as $(x, y) \rightarrow 0$ along $x=y^{2}$. Since different paths lead to different limiting values, the given limit does not exist.

Problem 13.

Let $\epsilon>0$. We want to find $\delta>0$ such that if $0<\sqrt{x^{2}+y^{2}}<\delta$ then $\left|\frac{3 x^{2} y}{x^{2}+y^{2}}-0\right|<\epsilon$. First, we notice that $\left|\frac{3 x^{2} y}{x^{2}+y^{2}}-0\right|=\frac{3 x^{2}|y|}{x^{2}+y^{2}}$. But since $x^{2} \leq x^{2}+y^{2}$, so $x^{2} /\left(x^{2}+y^{2}\right) \leq 1$, and therefore

$$
\frac{3 x^{2}|y|}{x^{2}+y^{2}} \leq 3|y|=3 \sqrt{y^{2}} \leq 3 \sqrt{x^{2}+y^{2}}
$$

Thus if wew choose $\delta=\epsilon / 3$ and let $0<\sqrt{x^{2}+y^{2}}<\delta$, then

$$
\left|\frac{3 x^{2} y}{x^{2}+y^{2}}-0\right| \leq 3 \sqrt{x^{2}+y^{2}}<3 \delta=\epsilon
$$

Hence,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0
$$

Problem 14.

$f_{x}=2 x / y, f_{y}=-x^{2} / y^{2} ; \quad f_{x}(2,-1)=-4$ and $f_{y}(2,-1)=-4$.
The tangent plane is $z=-4(x-2)-4(y+1)+f(2,-1)$, or $z=-4 x-4 y$.

Problem 15.

(a) The directional unit vector is $\left.\mathbf{u}=\frac{1}{2}<-1, \sqrt{3}\right\rangle$.

Thus, $D_{\mathbf{u}} f(x, y)=<-y \exp (-x y),-x \exp (-x y)>\cdot \frac{<-1, \sqrt{3}>}{2}$ and

$$
D_{\mathbf{u}} f(-1,1)=<-\mathrm{e}, \mathrm{e}>\cdot \frac{<-1, \sqrt{3}>}{2}=\frac{\mathrm{e}+e \sqrt{3}}{2} \approx 3.7132 .
$$

(b) The directional unit vector is $\mathbf{u}=\frac{1}{2}\langle\sqrt{2},-1,-1\rangle$.

Thus, $D_{\mathbf{u}} f(x, y)=<2 x, 2 y, 2 z>\cdot \frac{1}{2}<\sqrt{2},-1,-1>$ and

$$
D_{\mathbf{u}} f(1,-1,2)=\sqrt{2}-1 \approx 0.4142
$$

Problem 16.

$f(x, y)=x^{2}+4 x y+y^{2}, \quad g(x, y)=x-y-6 . \quad \nabla f(x, y)=\lambda \nabla g(x, y) \quad$ and $\quad g(x, y)=x-y-6=0 \quad$ is equivalent to

$$
<2 x+4 y, 4 x+2 y>=\lambda<1,-1>, \quad x-y=6 \quad \Longrightarrow \quad 2 x+4 y=\lambda, \quad 4 x+2 y=-\lambda, \quad x-y=6
$$

Critical point is $(3,-3)$ (with the corresponding $\lambda=-6$) and the minimum is $f(3,-3)=-18$.

Problem 17.

Minimize the square of the distance to the plane, $f(x, y, z)=x^{2}+y^{2}+z^{2}$, subject to $g(x, y, z)=x+3 y-2 z-4=0$. $\nabla f(x, y)=\lambda \nabla g(x, y) \quad$ and $\quad g(x, y)=x+3 y-2 z-4=0 \quad$ is equivalent to
$<2 x, 2 y, 2 z>=\lambda<1,3,-2>, \quad x+3 y-2 z-4=0 \quad \Longrightarrow \quad 2 x=\lambda, \quad 2 y=3 \lambda, \quad 2 z=-2 \lambda, \quad x+3 y-2 z=4$.
Critical point is $(2 / 7,6 / 7,-4 / 7)$ (with the corresponding $\lambda=4 / 7$). The nature of the problem indicates that this will give a minimum rather than a maximum (WHY ???). The least distance to the plane is

$$
\left[f\left(\frac{2}{7}, \frac{6}{7},-\frac{4}{7}\right)\right]^{\frac{1}{2}}=\left(\frac{8}{7}\right)^{\frac{1}{2}} \approx 1.0690
$$

Problem 18.

$<8,-3,-1>$ is the normal to $8 x-3 y-z=0 . \quad \nabla F(x, y, z)=<4 x, 6 y,-1>$ is normal to $z=2 x^{2}+3 y^{2}$ at $(x, y, z) .4 x=8$ and $6 y=-3$, if $x=2$ and $y=-1 / 2$; then $z=8.75$. At $(2,-1 / 2,8.75)$.

Problem 19.

$\nabla f(x, y)=<2 x-2 a \cos y, 2 a x \sin y>=<0,0>$ at $(0, \pm \pi / 2),(a, 0)$.
$D=f_{x x} f_{y y}-f_{x y}^{2}=(2)(2 a x \cos y)-(2 a \sin y)^{2}, \quad f_{x x}=2$. At $(0, \pm \pi / 2): \quad D=-4 a^{2}<0$, so $(0, \pm \pi / 2)$ are saddle points.
At $(a, 0): \quad D=4 a^{2}>0$ and $f_{x x}(a, 0)>0$, so $(a, 0)$ is a local minimum.

Problem 20.

Let s be the distance from the origin to (x, y, z) on the plane. Then $s^{2}=x^{2}+y^{2}+z^{2}$ and The equation of the plane is $x+2 y+3 z=12$.
Minimize $s^{2}=f(y, z)=(12-2 y-3 z)^{2}+y^{2}+z^{2}$.
$\nabla f(y, z)=<-48+12 z+10 y,-72+12 y+20 z>=<0,0>$ at $(12 / 7,18 / 7)$.
$D(12 / 7,18 / 7)=f_{y y}(12 / 7,18,7) f_{z z}(12 / 7,18 / 7)-\left[f_{y z}(12 / 7,18 / 7)\right]^{2}=56>0$ and $f_{y y}(12 / 7,18 / 7)=10>0$, so the point $(12 / 7,18 / 7)$ is a local minimum.
$s^{2}=504 / 49$, so the shortest distance is $s=(6 \sqrt{14}) / 7 \approx 3.2071$.

Problem 21.

Let L denote the sum of the edge lengths for a box of dimensions x, y, z.
Minimize $L=4 x+4 y+4 z$ subject to $V_{0}=x y z$.
$L(x, y)=4 x+4 y+4 V_{0} /(x y), x>0, y>0$.

$$
\nabla L(x, y)=4\left\langle\frac{x^{2} y-V_{0}}{x^{2} y}, \frac{x y^{2}-V_{0}}{x y^{2}}\right\rangle=<0,0>\quad \Longrightarrow \quad x^{2} y=V_{0} \quad \text { and } \quad x y^{2}=V_{0} \quad \Longrightarrow \quad x=y .
$$

Therefore (since $x^{2} y=V_{0}$), $x=y=V_{0}^{\frac{1}{3}}$. Finally, also $z=V_{0}^{\frac{1}{3}}$.
$L_{x x}=8 V_{0} /\left(x^{3} y\right) ; \quad D=L_{x x} L_{y y}-L_{x y}^{2}=\left[8 V_{0} /\left(x^{3} y\right)\right]\left[8 V_{0} /\left(x y^{3}\right)\right]-\left(4 V_{0} /\left(x^{2} y^{2}\right)\right]$.
At $\left(V_{0}^{\frac{1}{3}}, V_{0}^{\frac{1}{3}}\right): \quad D>0$ and $L_{x x}>0$, so the point $\left(V_{0}^{\frac{1}{3}}, V_{0}^{\frac{1}{3}}\right)$ is a local minimum.
There are no other critical points, and as $(x, y) \rightarrow\left(0^{+}, 0^{+}\right), L(x, y) \rightarrow \infty$.
Conclusion: The optimal box is a cube of the dimensions $\left(V_{0}^{\frac{1}{3}}, V_{0}^{\frac{1}{3}}, V_{0}^{\frac{1}{3}}\right)$.

