
Solutions to Practice Problems I
Math 250, Spring 2024 – Jacek Polewczak

Problem 1.
Let v =< a, b, c > be a vector perpendicular to < 4, 3, 6 > and < −2,−3,−2 >. Then

< a, b, c > · < 4, 3, 6 >= 0 and < a, b, c > · < −2,−3,−2 >= 0.

Therefore, 4a + 3b + 6c = 0 and −2a − 3b − 2c = 0. This pair of equations for a, b, and c has infinitely many
solutions. For example, with c = 3, we can solve the equations for a and b. The result is a = −6 and b = 2. Thus,
vector < −6, 2, 3 >, which has length 7, is perpendicular to < 4, 3, 6 > and < −2,−3,−2 >. Then the required
vectors are: (

10
7

)
< −6, 2, 3 > and

(
−10

7

)
< −6, 2, 3 > .

Note: Any choice of c 6= 0 in 4a+ 3b+ 6c = 0 and in −2a− 3b− 2c = 0 works. On the other hand, c = 0 leads
to the equations 4a+ 3b = 0 and 2a+ 3b = 0 without solutions.

Problem 2.
Normals to the planes are < 3,−2, 5 > and < 4,−2,−3 >, so the cosine of the smaller angle is

cos θ = |12 + 4− 15|
(38)1/2(29)1/2 = 1√

1102
.

Thus, the angle θ = 1.540668 radians or θ = 88.27◦. Note that with

cos θ = 12 + 4− 15
(38)1/2(29)1/2 = − 1√

1102
,

θ = 1.600925 radians or θ = 91.73◦.

Problem 3.
Suppose P (x, y, z) is a point in the plane ax+ by + cz + d = 0. The distance from any point Q(x0, y0, z0) to the
plane equals the length of the orthogonal projection of the vector

−→
PQ onto a vector n =< a, b, c > normal to the

plane, which is
|
−→
PQ · n|
|n| = |ax0 + bx0 + cz0 + d|√

a2 + b2 + c2

The point (0, 0, 9) belongs to the plane −3x+2y+z = 9. The distance between the parallel planes −3x+2y+z = 9
and 6x− 4y − 2z = 19 is

|6(0)− 4(0)− 2(9)− 19|
(36 + 16 + 4)1/2 = 37√

56
≈ 4.9443.

Problem 4.
The line segment between the points is perpendicular to the plane. Its midpoint, (2, 1, 1), belongs to the plane we
are looking for. Then, vector < 6− (−2), 1− 1,−2− 4 >=< 8, 0,−6 > is perpendicular to the plane. Therefore,
8(x− 2) + 0(y − 1)− 6(z − 1) = 0 or 4x− 3z = 5 is the equation of the plane.

Problem 5.
Two vectors in the plane are

< 4− (−1),−2− (−2), 1− (−3) > =< 5, 0, 4 >

and

< 5− 4, 1− (−2), 6− 1 > =< 1, 3, 5 >
1
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A vector normal to the plane is < 5, 0, 4 > × < 1, 3, 5 >=< −12,−21, 15 >= −3 < 4, 7,−5 >. Therefore, an
equation of the lane is 4(x+ 1) + 7(y + 2)− 5(x+ 3) = 0 or 4x+ 7y − 5z = −3.

Problem 6.
The cross product of vectors normal to those planes is parallel to the line of intersection of the planes. Thus,
a normal vector to the plane we seek is < 4,−3, 2 > × < 3, 2,−1 >=< −1, 10, 17 >. Equation of the plane is
−1(x− 6) + 10(y − 2) + 17(z + 1) = 0 or x− 10y − 17z = 3.

Problem 7.
Parametric equation: x = −1 + 4t, y = 3 + 2t, z = 2− t.

Problem 8.
(a) P (1,−1, 0) is on the line and so are vectors PQ =< 1, 0, 3 > and a =< 2, 3,−6 >. Then

d = |PQ× a|
|a| = | < −9, 12, 3 > |√

4 + 9 + 36
= 3
√

26
7
≈ 2.1853. (see page 847 of the textbook)

(b) P (1,−2, 0) and Q(0, 1, 0) are on the lines x = 1 + 2t, y = −2 + 3t, z = −4t and x = 3t, y = 1 + t, z = −5t,
respectively. Now, the length of the projection vector of PQ =< −1, 3, 0 > on vector

n = a× b =< 2, 3,−4 > × < 3, 1,−5 >=< −11,−2,−7 >

is the distance between these skew lines. Indeed, vector n is perpendicular to both lines. Therefore,

d = |PQ · n|
|n| = |PQ · (a× b)|

|a× b| = | < −1, 3, 0 > · < −11,−2,−7 > |
| < −11,−2,−7 > |

= 5√
174
≈ 0.3790.

Problem 9.

d

dt
[r(t)× r′(t)] = r(t)× r′′(t) = r(t)× cr(t) = c[r(t)× r(t)] = 0.

Integrating both sides with respect to t, we obtain r(t)×r′(t) = c, a constant vector (independent of t). Therefore,
r(t) is perpendicular to the vector c for each value of t, so the path is in a plane (whose normal is vector c).

Problem 10.
The natural domain is the subset of R2

D ={(x, y) ∈ R2 : x2 + y2 < 1, x
y
≥ 0}

={(x, y) ∈ R2 : x2 + y2 < 1, x ≥ 0, y > 0} ∪ {(x, y) ∈ R2 : x2 + y2 < 1, x ≤ 0, y < 0}

Problem 11.
(a) f(x, y) = ln(1 − x2 − y2) = g(h(x, y)), where g(t) = ln t and h(x, y) = 1 − x2 − y2. Functions g(t) and
h(x, y) are continuous for t > 0 and (x, y) ∈ R2, respectively. Therefore, f(x, y) being a composition of g and h

is continuous on the domain S = {(x, y) ∈ R2 : 1 − x2 − y2 > 0} = {(x, y) ∈ R2 : x2 + y2 < 1} (inside of the
circle with radius 1 centered at the origin).

(b) When xy 6= 0, sin(xy)/xy is a quotient of two continuous functions. Indeed, both sin t and xy are continuous
functions on R and R2, respectively. Therefore, the only suspicious point is (0, 0). However, we know that
lim
z→0

sin z
z

= 1, thus

lim
(x,y)→(0,0)

sin(xy)
xy

= 1.

Since f(0, 0) = 1, the definition of continuity implies that f(x, y) is continuous also at (0, 0). Thus, the function
is continuous for (x, y) ∈ R2, i.e., S = R2.
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(c) The function is a quotient of two polynomials. It is continuous for all (x, y) ∈ R2 except at the points where
the denominator is zero. The denominator is zero on the set {(x, y) ∈ R2 : x2 + y2 = 9} (the circle with radius 3
centered at the origin). The set S = R2 \ {(x, y) ∈ R2 : x2 + y2 = 9} (the whole plane except for the circle with
radius 3 centered at the origin).

Problem 12.
We let (x, y) → (0, 0) along any non-vertical line through the origin. Then y = mx, where m is the slope and

f(x, y) = f(x,mx) = m2x

1 +m2x2 . So, f(x, y)→ 0 as (x, y)→ 0 along y = mx. On a the vertical line through the
origin x = 0 and f(0, y) = 0, for y 6= 0. Thus f(x, y)→ 0 as (x, y)→ 0 along a vertical line. In spite of the fact
that f(x, y)→ 0 along any line through the origin, it does NOT show that the given limit is 0. Indeed, if we let
(x, y)→ (0, 0) along the parabola x = y2, we have

f(x, y) = f(y2, y) = y4

2y4 = 1
2
,

so f(x, y)→ 1
2 as (x, y)→ 0 along x = y2. Since different paths lead to different limiting values, the given limit

does not exist.

Problem 13.

Let ε > 0. We want to find δ > 0 such that if 0 <
√
x2 + y2 < δ then

∣∣∣ 3x2y
x2+y2 − 0

∣∣∣ < ε. First, we notice that∣∣∣ 3x2y
x2+y2 − 0

∣∣∣ = 3x2|y|
x2+y2 . But since x2 ≤ x2 + y2, so x2/(x2 + y2) ≤ 1, and therefore

3x2|y|
x2 + y2 ≤ 3|y| = 3

√
y2 ≤ 3

√
x2 + y2.

Thus if wew choose δ = ε/3 and let 0 <
√
x2 + y2 < δ, then∣∣∣∣ 3x2y

x2 + y2 − 0
∣∣∣∣ ≤ 3

√
x2 + y2 < 3δ = ε.

Hence,

lim
(x,y)→(0,0)

3x2y

x2 + y2 = 0.

Problem 14.
fx = 2x/y, fy = −x2/y2; fx(2,−1) = −4 and fy(2,−1) = −4.
The tangent plane is z = −4(x− 2)− 4(y + 1) + f(2,−1), or z = −4x− 4y.

Problem 15.
(a) The directional unit vector is u = 1

2
< −1,

√
3 >.

Thus, Duf(x, y) =< −y exp(−xy),−x exp(−xy) > ·< −1,
√

3 >
2

and

Duf(−1, 1) =< −e, e > ·< −1,
√

3 >
2

= e + e
√

3
2

≈ 3.7132.

(b) The directional unit vector is u = 1
2
<
√

2,−1,−1 >.

Thus, Duf(x, y) =< 2x, 2y, 2z > ·1
2
<
√

2,−1,−1 > and

Duf(1,−1, 2) =
√

2− 1 ≈ 0.4142.
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Problem 16.
f(x, y) = x2 +4xy+y2, g(x, y) = x−y−6. ∇f(x, y) = λ∇g(x, y) and g(x, y) = x−y−6 = 0 is equivalent
to

< 2x+ 4y, 4x+ 2y >= λ < 1,−1 >, x− y = 6 =⇒ 2x+ 4y = λ, 4x+ 2y = −λ, x− y = 6.

Critical point is (3,−3) (with the corresponding λ = −6) and the minimum is f(3,−3) = −18.

Problem 17.
Minimize the square of the distance to the plane, f(x, y, z) = x2+y2+z2, subject to g(x, y, z) = x+3y−2z−4 = 0.

∇f(x, y) = λ∇g(x, y) and g(x, y) = x+ 3y − 2z − 4 = 0 is equivalent to

< 2x, 2y, 2z >= λ < 1, 3,−2 >, x+ 3y−2z−4 = 0 =⇒ 2x = λ, 2y = 3λ, 2z = −2λ, x+ 3y−2z = 4.

Critical point is (2/7, 6/7,−4/7) (with the corresponding λ = 4/7). The nature of the problem indicates that
this will give a minimum rather than a maximum (WHY ???). The least distance to the plane is[

f

(
2
7
,
6
7
,−4

7

)] 1
2

=
(

8
7

) 1
2

≈ 1.0690.

Problem 18.
< 8,−3,−1 > is the normal to 8x − 3y − z = 0. ∇F (x, y, z) =< 4x, 6y,−1 > is normal to z = 2x2 + 3y2 at
(x, y, z). 4x = 8 and 6y = −3, if x = 2 and y = −1/2; then z = 8.75. At (2,−1/2, 8.75).

Problem 19.
∇f(x, y) =< 2x− 2a cos y, 2ax sin y >=< 0, 0 > at (0,±π/2), (a, 0).
D = fxxfyy − f 2

xy = (2)(2ax cos y)− (2a sin y)2, fxx = 2. At (0,±π/2): D = −4a2 < 0, so (0,±π/2) are saddle
points.
At (a, 0): D = 4a2 > 0 and fxx(a, 0) > 0, so (a, 0) is a local minimum.

Problem 20.
Let s be the distance from the origin to (x, y, z) on the plane. Then s2 = x2 + y2 + z2 and The equation of the
plane is x+ 2y + 3z = 12.
Minimize s2 = f(y, z) = (12− 2y − 3z)2 + y2 + z2.
∇f(y, z) =< −48 + 12z + 10y,−72 + 12y + 20z >=< 0, 0 > at (12/7, 18/7).
D(12/7, 18/7) = fyy(12/7, 18, 7)fzz(12/7, 18/7) − [fyz(12/7, 18/7)]2 = 56 > 0 and fyy(12/7, 18/7) = 10 > 0, so
the point (12/7, 18/7) is a local minimum.
s2 = 504/49, so the shortest distance is s = (6

√
14)/7 ≈ 3.2071.

Problem 21.
Let L denote the sum of the edge lengths for a box of dimensions x, y, z.
Minimize L = 4x+ 4y + 4z subject to V0 = xyz.
L(x, y) = 4x+ 4y + 4V0/(xy), x > 0, y > 0.

∇L(x, y) = 4
〈
x2y − V0

x2y
,
xy2 − V0

xy2

〉
=< 0, 0 > =⇒ x2y = V0 and xy2 = V0 =⇒ x = y.

Therefore (since x2y = V0), x = y = V
1
3

0 . Finally, also z = V
1
3

0 .
Lxx = 8V0/(x3y); D = LxxLyy − L2

xy = [8V0/(x3y)][8V0/(xy3)]− (4V0/(x2y2)].
At (V

1
3

0 , V
1
3

0 ): D > 0 and Lxx > 0, so the point (V
1
3

0 , V
1
3

0 ) is a local minimum.
There are no other critical points, and as (x, y)→ (0+, 0+), L(x, y)→∞.
Conclusion: The optimal box is a cube of the dimensions (V

1
3

0 , V
1
3

0 , V
1
3

0 ).


