## Practice Problems I <br> Math 250, Spring 2024 - Jacek Polewczak

## Problem 1.

Find two vectors of length 10 , each of which is perpendicular to both $4 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}$ and $-2 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k}$.

## Problem 2.

Find the smaller of the angles between the planes $3 x-2 y+5 z=7$ and $4 x-2 y-3 z=2$.

## Problem 3.

Find the distance between the parallel planes $-3 x+2 y+z=9$ and $6 x-4 y-2 z=19$.

## Problem 4.

Find the equation of the plane, each of whose points are equidistant from $(-2,1,4)$ and $(6,1,-2)$.

## Problem 5.

Find equation of the plane through $(5,1,6),(-1,-2,-3)$, and $(4,-2,1)$.
Problem 6.
Find the equation of the plane through $(6,2,-1)$ and perpendicular to the line of intersection of the planes $4 x-3 y+2 z+5=0$ and $3 x+2 y-z+11=0$.

## Problem 7.

Write both the parametric equation of the line through the given point and parallel to the given vector

$$
(-1,3,2), \quad \mathbf{v}=<4,2,-1>.
$$

## Problem 8.

(a) Find the distance from $Q(2,-1,3)$ to the line $x=1+2 t, y=-1+3 t, z=-6 t$.
(b) Find the distance between two nointersecting skew lines: $x=1+2 t, y=-2+3 t, z=-4 t$ and $x=3 t$, $y=1+t, z=-5 t$.

## Problem 9.

Show that if an object moves subject only to a central force (that is $\mathbf{r}^{\prime \prime}(t)=c \mathbf{r}(t)$, where $c$ is a constant), then the object moves in a plane.

Hint: Show that $\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)$ is a constant vector for all $t \geq 0$.

## Problem 10.

Find the natural domain for the function

$$
f(x, y)=\frac{\sqrt{\frac{x}{y}}}{\sqrt{1-x^{2}-y^{2}}}
$$

## Problem 11.

Describe the largest set $S$ on which the following functions are continuous.
(a) $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$
(b) $f(x, y)= \begin{cases}\frac{\sin (x y)}{x y} & x y \neq 0 \\ 1 & x y=0\end{cases}$
(c) $f(x, y)=\frac{x^{3}-2 x^{4} y-y^{5}-4}{x^{2}+y^{2}-9}$

## Problem 12.

If $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$, analyze the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.

## Problem 13.

Use $\epsilon-\delta$ proof to show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0
$$

Problem 14.
Find the equation of the tangent plane at $(2,-1)$ for $f(x, y)=\frac{x^{2}}{y}$.

## Problem 15.

Find the directional derivative of $f$ at the given point $P$ in the direction of a.
(a) $f(x, y)=\exp (-x y) ; \quad P=(-1,1) ; \quad \mathbf{a}=-\mathbf{i}+\sqrt{3} \mathbf{j}$
(b) $f(x, y, z)=x^{2}+y^{2}+z^{2} ; \quad P=(1,-1,2) ; \quad \mathbf{a}=\sqrt{2} \mathbf{i}-\mathbf{j}-\mathbf{k}$

## Problem 16.

Use the method of Lagrange's multipliers to find the minimum of $f(x, y)=x^{2}+4 x y+y^{2}$, subject to the constraint $x-y-6=0$.

## Problem 17.

Use the method of Lagrange's multipliers to find the least distance between the origin and the plane $x+3 y-2 z=4$.

## Problem 18.

Find a point on the surface $z=2 x^{2}+3 y^{2}$ where the the tangent plane is parallel to the plane $8 x-3 y-z=0$.

## Problem 19.

Find all critical points; indicate whether each such point gives a local minimum, a local maximum, or whether it is a saddle point.

$$
f(x, y)=x^{2}+a^{2}-2 a x \cos y ; \quad S=\{(x, y):-\infty<x<\infty,-\pi<y<\pi\}
$$

## Problem 20.

Use the Second-Partials Test to find the shortest distance from the origin to the plane $x+2 y+3 z=12$.

## Problem 21.

Use the Second-Partials Test to find the shape of the rectangular box of volume $V_{0}$ for which the sum of the edge lengths is least.

