Change of variables examples Math 250, Spring 2024 - Jacek Polewczak

Problem 1.

Use the change of variables $x=u^{2}-v^{2}$ and $y=2 u v$ to evaluate the integral $\iint_{R} y d A$, where R is the region bounded by the x-axis and the parabolas $y^{2}=4-4 x$ and $y^{2}=4+4 x$, and $y \geq 0$ (see the figure to the right).

We will show that the transformation $T(u, v)=\left[u^{2}-v^{2}, 2 u v\right]$ maps the square $S=\{(u, v): 0 \leq v \leq 1,0 \leq v \leq 1\}$ onto region R.
The transformation maps the boundary of S into the boundary of R. We begin by finding the images of the sides of S into the boundary of R. The first side, S_{1} of the square S is given by $v=0$ and $0 \leq u \leq 1$ From the given equations we have $x=u^{2}, y=0$, and so $0 \leq x \leq 1$ Thus S_{1} is mapped into the line segment from $(0,0)$ to $(1,0)$ in the $x y$-plane. The second side, S_{2}, is $u=1,0 \leq v \leq 1$ and, putting $u=1$ in the given equations we get $x=1-v^{2}$ and $y=2 v$. Eliminating v we obtain $x=1-y^{2} / 4$ with $0 \leq x \leq 1$, which is part of parabola. S_{3} is given by $v=1,0 \leq u \leq 1$, whose image is the parabolic arc $x=y^{2} / 4-1$ with $-1 \leq x \leq 0$. Finally, S_{4} is given by $u=0,0 \leq v \leq 1$ whose image $x=-v^{2}, y=0$, that is $-1 \leq x \leq 0$.
The Jacobian of T is

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right|=4 u^{2}+4 v^{2}>0
$$

Thus,

$$
\begin{aligned}
\iint_{R} y d A & =\iint_{S} 2 u v|J(u, v)| d A=\int_{0}^{1} \int_{0}^{1}(2 u v) 4\left(u^{2}+v^{2}\right) d u d v=8 \int_{0}^{1} \int_{0}^{1}\left(u^{3} v+u v^{3}\right) d u d v=8 \int_{0}^{1}\left[\frac{1}{4} u^{4} v+\frac{1}{2} u^{2} v^{3}\right]_{u=0}^{u=1} d v \\
& =\int_{0}^{1}\left(2 v+4 v^{3}\right) d v=\left[v^{2}+v^{4}\right]_{0}^{1}=2
\end{aligned}
$$

Problem 2.

Evaluate the integral, $\iint_{R} \exp [(x+y) /(x-y)] d A$, where R is the trapezoidal region with vertices $(1,0),(2,0)$, $(0,-2)$, and $(0,-1)$. Th integral of $\exp [(x+y) /(x-y)]$ is not easy to integrate. We make a change of variables suggested by the form of this function:

$$
u=x+y, \quad v=x-y .
$$

These equation define the transformation T^{-1} from $x y$-plane to $u v$-plane. Solving the above equations for x and y we get

$$
x=\frac{1}{2}(u+v), \quad y=\frac{1}{2}(u-v),
$$

In other words, $T(u, v)=\left[\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right]$ is the transformation from $u v$-plane to $x y$-plane with the Jacobian of T

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2} .
$$

Now we need to find the region S is $u v$-plane. The sides of R lie on the lines

$$
y=0, \quad x-y=2, \quad x=0, \quad x=y=1
$$

thus the image lines in $u v$-plane are

$$
u=v, \quad v=2, \quad u=-v, \quad v=1
$$

The region S is the trapezoidal region with vertices $(1,1),(2,2),(-2,2)$, and $(-1,1)$. Thus the region S is

$$
S=\{(u, v): 1 \leq v \leq 2,-v \leq u \leq v\}
$$

Therefore

$$
\begin{aligned}
\iint_{R} \exp [(x+y) /(x-y)] d A & =\iint_{S} \exp (u / v)|J(u, v)| d A=\int_{1}^{2} \int_{-v}^{v} \exp (u / v) d u d v=\frac{1}{2} \int_{1}^{2}[v \exp (u / v)]_{u=-v}^{u=v} d v \\
& =\frac{1}{2} \int_{1}^{2}\left(e-e^{-1}\right) v d v=\frac{3}{4}\left(e-e^{-1}\right)
\end{aligned}
$$

Problem 3.

Setup the integral $\int_{3}^{4} \int_{0}^{1}(x+2 y)(2 x+y) d x d y$ using a suitable change of variables.
We make a change of variables suggested by the form of this function:

$$
u=x+2 y, \quad v=2 x+y
$$

Solving the above system for (x, y), we get

$$
\begin{gathered}
x=-\frac{u}{3}+\frac{2 v}{3}, \quad y=-\frac{v}{3}+\frac{2 u}{3} . \\
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right|=-\frac{1}{3} .
\end{gathered}
$$

The corners of the rectangle in the $x y$-plane are $(0,3),(1,3),(1,4)$, and $(0,4)$, and they map into $(6,3),(7,5)$, $(9,6)$, and $(8,4)$, respectively, in the $u v$-plane. This is parallelogram P. Note the transformations T and T^{-1} are linear transformations.

$$
\int_{3}^{4} \int_{0}^{1}(x+2 y)(2 x+y) d x d y=\frac{1}{3} \int_{P} u v d v d u
$$

Problem 4.

Evaluate the integral $\int_{R} \exp \left[\left(x^{3}+y^{3}\right) / x y\right] d A$, where

$$
R=\left\{(x, y): y^{2}-x \leq 0, x^{2}-y \leq 0\right\}
$$

using the change of variables $x=u^{2} v, y=u v^{2}$.
The Jacobian is

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
2 u v & u^{2} \\
v^{2} & 2 u v
\end{array}\right|=3 u^{2} v^{2} .
$$

The region R transforms into (Check it!)

$$
S=\{(u, v): 0 \leq u \leq 1,0 \leq v \leq 1\}
$$

and therefore,

$$
\begin{aligned}
\int_{R} \exp \left[\left(x^{3}+y^{3}\right) / x y\right] d A & =\int_{S} \exp \left(\frac{u^{6} v^{3}+u^{3} v^{6}}{u^{3} v^{3}}\right)|J(u, v)| d A=3 \int_{S} u^{2} \exp \left(u^{3}\right) v^{2} \exp \left(v^{3}\right) d u d v \\
& =\frac{1}{3}\left(\int_{0}^{1} 3 u^{2} \exp \left(u^{3}\right) d u\right)^{2}=\frac{1}{3}(e-1)^{2}
\end{aligned}
$$

