### The data for n = 67

The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =1942.1227

The minimum gram eigenvector projection shows the typical 2 modulo 5 structure of 1 point then 13 rows of 5's and then 1 with thethe degree 5 points in the form (1,5,5,1).

smallest eigenvalue Gram view

second largest eigenvalue Gram view

largest eigenvalue Gram view

The Coulomb view

The points

{{-0.872937, 0.183909, 0.45184}, {-0.774115, -0.228451, 0.590386}, {0.483968, -0.846517, 0.221775}, {-0.94715, 0.318721, 0.0363902}, {-0.504442, -0.588077, 0.632221}, {-0.549045, 0.733121, -0.401352}, {0.914579, 0.107318, -0.389909}, {0.133502, 0.554829, 0.821183}, {0.919832, -0.18467, 0.346131}, {-0.0307024, 0.845711, 0.532757}, {-0.832925, 0.389108, -0.393485}, {0.666879, -0.0672428, 0.742126}, {-0.444755, -0.871274, 0.207544}, {-0.772446, -0.574557, 0.270577}, {-0.357244, 0.607303, 0.709619}, {0.76378, 0.596031, 0.247766}, {0.017844, -0.0968246, -0.995141}, {0.51567, 0.763687, -0.388417}, {0.120277, 0.936415, -0.329637}, {0.830293, 0.524666, -0.187989}, {-0.697761, 0.573974, 0.428583}, {0.769852, -0.367863, -0.521541}, {0.303833, -0.932125, -0.197049}, {-0.00843187, -0.125052, 0.992114}, {0.66838, -0.00738794, -0.743783}, {0.253171, 0.638578, -0.726721}, {-0.0822787, 0.400426, -0.912628}, {-0.715451, 0.698663, -0.000431278}, {-0.959269, -0.0294357, -0.280958}, {0.40146, 0.790536, 0.462474}, {0.328177, 0.215286, -0.919756}, {0.653668, -0.503659, 0.564841}, {0.983235, 0.175029, 0.0511213}, {-0.431631, -0.194452, 0.880843}, {-0.514283, 0.443664, -0.733945}, {0.809993, -0.56646, 0.151771}, {0.426841, -0.667307, -0.610335}, {-0.177332, 0.265935, 0.94754}, {0.957008, -0.25876, -0.131068}, {0.490357, 0.871153, 0.0253316}, {0.556987, 0.449598, 0.698303}, {0.0596043, -0.981551, 0.181672}, {-0.0877247, -0.533228, 0.841411}, {0.325768, 0.147945, 0.933803}, {0.677465, -0.697409, -0.233801}, {0.390299, -0.308667, -0.867405}, {-0.389563, -0.71841, -0.576305}, {-0.588458, 0.211407, 0.7804}, {-0.200732, -0.963703, -0.176023}, {0.0763006, 0.98868, 0.129193}, {-0.00170828, -0.535223, -0.844709}, {0.656197, 0.419146, -0.627473}, {-0.884621, -0.445393, -0.138096}, {-0.285141, 0.947997, -0.141409}, {-0.16726, 0.763203, -0.624135}, {-0.732824, -0.407983, -0.544536}, {0.0307317, -0.845708, -0.53276}, {0.849752, 0.233251, 0.472774}, {-0.149867, -0.837102, 0.526118}, {-0.392599, 0.875429, 0.281941}, {0.276753, -0.746911, 0.604592}, {-0.405047, -0.352578, -0.843579}, {0.348333, -0.36084, 0.865135}, {-0.740666, 0.020042, -0.671574}, {-0.974046, -0.144915, 0.173878}, {-0.37893, 0.0674233, -0.922966}, {-0.609399, -0.768449, -0.195238}}

Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).