### The data for n = 63

The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =1708.88

The minimum gram eigenvector projection shows rows of 2's with 1 point at the South pole and the degree 5 points in rows of 2's also. The middle gram eigenvector projection shows rows of 3's with the degree 5 points in rows of 3's also.

smallest eigenvalue Gram view

second largest eigenvalue Gram view

largest eigenvalue Gram view

The Coulomb view

The points

{{-0.37472, 0.377443, -0.846831}, {-0.0160831, -0.61191, 0.790764}, {0.929593, 0.367388, 0.0297074}, {0.0342476, -0.444965, -0.894893}, {-0.560666, -0.723178, -0.40332}, {-0.355589, -0.766622, 0.534647}, {-0.76141, 0.337203, 0.553669}, {0.470801, 0.387703, -0.792485}, {-0.261158, 0.843269, 0.469781}, {0.60511, -0.761802, 0.231298}, {0.275181, -0.198194, 0.940741}, {-0.830988, -0.304551, -0.465518}, {0.803583, -0.379685, -0.45836}, {-0.473958, -0.423991, -0.771748}, {-0.429105, 0.739774, -0.518269}, {0.698992, -0.0319098, -0.714417}, {0.971273, -0.0158943, -0.237435}, {0.38833, 0.750425, -0.534848}, {-0.801006, 0.58038, -0.146796}, {0.0674531, 0.271507, -0.96007}, {-0.0809157, 0.992628, 0.0902295}, {-0.00645813, 0.664658, -0.74712}, {0.80937, 0.340007, -0.478869}, {0.247428, -0.829439, -0.50081}, {0.379685, 0.240943, 0.893189}, {-0.0728948, 0.22572, 0.971461}, {0.793184, -0.408014, 0.452089}, {0.235203, 0.883777, 0.404498}, {-0.982166, -0.165956, 0.088365}, {0.896804, -0.442414, -0.00349828}, {0.621319, -0.741094, -0.254445}, {-0.837452, -0.539601, -0.0866271}, {-0.229579, -0.0763035, -0.970294}, {0.351815, 0.933548, -0.0686676}, {-0.16243, -0.957077, -0.240041}, {-0.753605, -0.544656, 0.368008}, {0.455201, -0.537494, 0.709854}, {-0.398685, 0.516843, 0.757578}, {0.811896, 0.306999, 0.496564}, {-0.951205, 0.0961912, -0.293183}, {-0.734618, 0.400506, -0.54766}, {-0.653449, 0.695128, 0.299668}, {-0.526211, -0.847532, 0.0692157}, {0.274034, -0.9611, -0.0345133}, {0.699931, 0.678122, -0.224161}, {-0.0289971, 0.930601, -0.364884}, {-0.844703, -0.111598, 0.523472}, {0.225646, -0.850672, 0.474805}, {0.686514, -0.0633914, 0.724348}, {-0.466705, 0.880565, -0.0824186}, {0.318724, -0.0945931, -0.943116}, {0.662105, 0.710651, 0.23789}, {-0.947072, 0.281791, 0.153779}, {-0.657526, 0.00415034, -0.75342}, {0.463493, -0.503793, -0.728949}, {0.49432, 0.582428, 0.64531}, {-0.110707, -0.968829, 0.221619}, {-0.165327, -0.744595, -0.646719}, {0.0528847, 0.631807, 0.77332}, {0.96776, -0.0427614, 0.248217}, {-0.526358, -0.401848, 0.74931}, {-0.168103, -0.221608, 0.960537}, {-0.52203, 0.0649169, 0.850453}}

Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).