The data for n = 62


The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =1652.91


The minimum gram eigenvector projection shows rows in the 2 mod 5 structure of 1 then 12 rows of 5's and 1, with the degree 5 points in the form (1,5,5,1)..

[Graphics:n62pic.jpg]

Back to the top of the page


smallest eigenvalue Gram view

[Graphics:n62g1.jpg]

Back to the top of the page


second largest eigenvalue Gram view

[Graphics:n62g2.jpg]

Back to the top of the page


largest eigenvalue Gram view

[Graphics:n62g3.jpg]

Back to the top of the page


The Coulomb view

[Graphics:n62coul.jpg]

Back to the top of the page


The points

{{-0.227311, -0.246997, -0.941978}, {-0.157965, 0.126985, 0.979246}, {-0.92597, -0.362568, 0.105472}, {0.0711323, 0.193724, -0.978474}, {-0.521577, -0.238181, 0.819285}, {-0.937477, -0.145565, -0.316145}, {-0.385169, -0.676145, \ -0.628071}, {0.679009, -0.184504, 0.710566}, {0.23898, 0.371611, 0.897103}, {0.818781, -0.422083, -0.389158}, {0.680407, 0.545636, -0.489212}, {0.646016, 0.28053, 0.709906}, {0.0237607, -0.599174, -0.800266}, {-0.046465, 0.997836, -0.0465296}, {-0.155327, 0.554292, -0.8177}, {0.920823, 0.164444, 0.353615}, {-0.556065, 0.226325, 0.79973}, {-0.786232, 0.607121, 0.115077}, {-0.560115, 0.559053, -0.611336}, {0.314703, -0.0737093, 0.946324}, {0.720884, 0.594593, 0.35607}, {0.318334, 0.888896, -0.329435}, {-0.632856, -0.293064, -0.716663}, {0.0587867, \ -0.891034, -0.450115}, {0.127536, -0.857093, 0.499125}, {-0.0892191, -0.320694, 0.942972}, {0.79717, -0.603432, 0.0197572}, {-0.668548, -0.739893, 0.074852}, {0.343341, 0.919169, 0.192991}, {0.657733, -0.171706, -0.73342}, {-0.651276, -0.570857, 0.499962}, {-0.303639, -0.905593, 0.296151}, {-0.406395, 0.161288, -0.899349}, {-0.748076, -0.568593, -0.342176}, {0.44335, \ -0.880205, 0.169352}, {0.901394, -0.284638, 0.326296}, {-0.768281, 0.134081, -0.625913}, {-0.850858, -0.140621, 0.506227}, {-0.524185, 0.644762, 0.556338}, {0.28501, -0.533988, 0.796006}, {-0.872745, 0.403723, -0.274451}, {0.610068, -0.61554, 0.498927}, {0.456581, -0.594332, -0.662045}, {-0.245071, -0.668102, 0.702552}, {0.256579, -0.21238, -0.942901}, {0.989998, -0.110899, \ -0.0872049}, {0.275641, 0.638869, -0.71824}, {-0.134747, 0.865157, -0.48306}, {-0.0491387, 0.8838, 0.465277}, {0.488154, -0.826497, -0.280373}, {0.929185, 0.363754, -0.0655552}, {0.352298, 0.704629, 0.615942}, {-0.155033, 0.578186, 0.80104}, {-0.838076, 0.306172, 0.45154}, {-0.363455, -0.904203, -0.224316}, {-0.414172, 0.890133, 0.190064}, {0.507491, 0.250401, -0.824471}, {-0.530771, 0.811968, -0.24288}, {-0.991561, 0.11043, 0.0679115}, {0.0427214, -0.999086, 0.00155595}, {0.668473, 0.739958, -0.0748658}, {0.873434, 0.12385, -0.470928}}

Back to the top of the page


Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).