The data for n = 37b


The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =560.6279648


There is not noticeable band structure in our projections.

[Graphics:n37bpic.jpg]

Back to the top of the page


smallest eigenvalue Gram view

[Graphics:n37bg1.jpg]

Back to the top of the page


second largest eigenvalue Gram view

[Graphics:n37bg2.jpg]

Back to the top of the page


largest eigenvalue Gram view

[Graphics:n37bg3.jpg]

Back to the top of the page


The Coulomb view

[Graphics:n37bcoul.jpg]

Back to the top of the page


The points

{{-0.803428, -0.231787, 0.548433}, {-0.3229, 0.82153, -0.469919}, {-0.0965215, 0.764148, 0.637779}, {-0.147956, 0.987155, 0.0602822}, {0.0779274, 0.0515575, -0.995625}, {-0.931223, 0.26826, 0.246697}, {0.62965, 0.0684476, -0.773858}, {0.232748, -0.907338, 0.350095}, {0.483279, -0.0465369, 0.874229}, {-0.805796, 0.503864, -0.311148}, {0.629221, -0.536152, 0.562692}, {-0.353975, -0.328286, -0.875745}, {0.313928, 0.897023, -0.311126}, {-0.572847, 0.376199, 0.728231}, {-0.363887, -0.175922, 0.914679}, {0.190445, 0.586506, -0.787237}, {0.729099, -0.457355, -0.509158}, {0.830333, -0.555008, 0.0501331}, {-0.348417, -0.735078, 0.581606}, {-0.788212, -0.012895, -0.615268}, {-0.656708, -0.616639, -0.434156}, {0.530144, 0.496126, 0.687609}, {0.390757, -0.891831, -0.227916}, {0.00249031, 0.277772, 0.960644}, {0.844641, 0.517066, 0.138652}, {-0.618973, 0.75268, 0.224377}, {0.908934, -0.00214673, 0.416935}, {0.39968, 0.874721, 0.274079}, {0.979934, 0.00433277, -0.199275}, {-0.97927, -0.175571, -0.101018}, {-0.407997, 0.367784, -0.835628}, {0.108162, -0.503917, 0.856953}, {0.262445, -0.495612, -0.827944}, {-0.236371, -0.971663, -0.000571697}, {0.734224, 0.520696, -0.43565}, {-0.11152, -0.827768, -0.549875}, {-0.732522, -0.664821, 0.146372}}

Back to the top of the page


Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).