The data for n = 37a


The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =560.6188623


The middle gram eigenvector projection shows bandology of (1,5,5,5,5,5,5,5,1).

[Graphics:n37apic.jpg]

Back to the top of the page


smallest eigenvalue Gram view

[Graphics:n37ag1.jpg]

Back to the top of the page


second largest eigenvalue Gram view

[Graphics:n37ag2.jpg]

Back to the top of the page


largest eigenvalue Gram view

[Graphics:n37ag3.jpg]

Back to the top of the page


The Coulomb view

[Graphics:n37acoul.jpg]

Back to the top of the page


The points

{{-0.471286, 0.608506, 0.638443}, {0.414249, 0.283701, -0.864819}, {0.159562, -0.831295, -0.532436}, {-0.929791, 0.122026, -0.347272}, {0.369496, 0.762143, -0.531611}, {0.563217, 0.518641, 0.643271}, {0.80266, -0.105945, 0.586952}, {-0.612348, -0.46612, 0.638563}, {-0.968599, -0.210642, 0.132084}, {-0.683208, -0.720797, 0.116952}, {0.285734, -0.9564, 0.0604536}, {-0.766022, -0.467181, -0.441534}, {-0.167265, -0.896738, 0.409735}, {-0.474012, 0.872737, 0.116801}, {0.349412, -0.0458905, 0.935845}, {-0.601439, 0.0792641, -0.794977}, {0.326743, -0.380413, -0.865173}, {0.824414, 0.438173, -0.358256}, {-0.0865941, 0.0119219, -0.996172}, {-0.788206, 0.103531, 0.606641}, {-0.165843, 0.589994, -0.790192}, {0.409935, -0.646894, 0.643026}, {-0.0618458, 0.967431, -0.245464}, {0.897531, 0.382586, 0.21924}, {-0.881418, 0.453514, 0.132013}, {0.0542574, 0.493876, 0.867838}, {-0.304992, 0.0401396, 0.951509}, {0.767786, -0.602214, 0.218731}, {0.990406, -0.130473, -0.0455359}, {0.788206, -0.103531, -0.60664}, {0.523571, 0.849779, 0.0612238}, {0.0699808, 0.90952, 0.409728}, {-0.309863, -0.918443, -0.245861}, {-0.0750322, -0.490983, 0.867932}, {-0.312832, -0.526287, -0.79067}, {-0.619394, 0.649148, -0.441541}, {0.68283, -0.636385, -0.358828}}

Back to the top of the page


Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).