The data for n = 36


The potential
The picture and a description of the configuration
The Gram minimal eigenvalue projection
The Gram middle eigenvalue projection
The Gram largest eigenvalue projection
The Coulomb view
The points in Mathematica format

potential =529.1224


The maximum gram eigenvalue projection has 18 rows of 2's. All of the 12 degree 5 points occur in parrallel pairs.

[Graphics:n36pic.jpg]

Back to the top of the page


smallest eigenvalue Gram view

[Graphics:n36g1.jpg]

Back to the top of the page


second largest eigenvalue Gram view

[Graphics:n36g2.jpg]

Back to the top of the page


largest eigenvalue Gram view

[Graphics:n36g3.jpg]

Back to the top of the page


The Coulomb view

[Graphics:n36coul.jpg]

Back to the top of the page


The points

{{0.299653, -0.401587, 0.865411}, {-0.549946, -0.795958, -0.253004}, {-0.663013, -0.231045, 0.712062}, {-0.893305, -0.29645, -0.337821}, {-0.854477, 0.459891, 0.241597}, {-0.882102, 0.311149, -0.353669}, {-0.573112, 0.1188, -0.81082}, {0.542694, -0.574758, -0.612485}, {0.389084, -0.795738, 0.464128}, {0.811754, 0.392385, -0.432537}, {-0.472506, -0.448905, -0.758434}, {-0.571362, 0.360335, 0.737363}, {0.414191, -0.901362, -0.126463}, {-0.00337991, 0.236562, -0.971611}, {0.232466, 0.896008, 0.378325}, {-0.160856, -0.0449803, 0.985952}, {0.0727274, -0.356207, -0.931573}, {-0.134664, -0.977769, 0.160725}, {-0.0250924, -0.850798, -0.524893}, {-0.697021, -0.658052, 0.284832}, {-0.222859, -0.677699, 0.700755}, {0.319552, 0.676898, -0.663095}, {0.431385, 0.194514, 0.880949}, {0.798521, -0.185036, 0.572822}, {-0.361245, 0.853997, 0.374421}, {0.978156, 0.170327, 0.119162}, {0.549004, 0.0417668, -0.834776}, {0.835943, -0.537681, 0.109993}, {-0.311233, 0.666399, -0.677529}, {0.697763, 0.524984, 0.487359}, {0.91071, -0.205625, -0.358226}, {-0.972161, -0.106007, 0.208962}, {-0.00629941, 0.570317, 0.821401}, {0.611887, 0.787451, -0.0742672}, {0.0235827, 0.978689, -0.203989}, {-0.564685, 0.805186, -0.181126}}

Back to the top of the page


Copyright by Neubauer, Schilling, Watkins and Zeitlin (1998).