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Infrared Visibility Prediction by Statistical Methods

By ArnoLp CouRrT, GONG-YUH LIN and STEPHEN ZETSCHE!

Abstract — This study attempts to find statistical methods of predicting infrared visibility (IRV), as
calculated from hourly meteorological observations from a North Atlantic weather ship. Simple and multiple
regressions expressing IRV as a function of its component weather variables, and exponential data
transformations, for time lags of 1 to 24 hours, gave R? values from 0.68 (1-hour lag) to 0.09 (24-hour lag).
These have limited predictive power for lags up to 6 hours, almost none for longer lags. Two-category
discriminant analysis, using class breaks at 2 km or 10 km is of little use, due to uneven data distribution.

Possibly - more .promisihg would be an application of Machine Output Statistics (‘MOS’), used
routinely for temperature forecasts, to this problem.
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1. Background

Predicting the distance at which objects can be detected by a forward-looking
infrared device has become an important problem, especially at sea. “Infraced visibility’,
or ‘IRV’, is not routinely measured and hence must be estimated from other
meteorological observations (Table.1). An algorithm developed by the U.S. Navy (KaTz
et al., 1979) expresses IRV as a function of wind speed, moisture, precipitation, air
temperature, pressure, and visual range. To estimate IRV from hourly weather
_observations in which the basic moisture measurement is by psychrometer, the
equations have been revised to use wet bulb temperature, rather than relative humidity
or mixing ratio, as the basic quantity (Table 2). :

Accepting without evaluation the computational estimate of IRV, this study seeks to
describe the statistical properties of IRV in hopes of developing ways to forecast it 1 to
24 hours in advance. For this purpose, hourly IRV was computed for Ocean Weather
Station ‘I’ (59 N, 19 W) 600 km south of Iceland for approximately 10 years of record
(1961-1971). Mean IRV was 31.3 km, with a very slight diurnal variation from a mean
minimum of 30.4 km at 3 a.m. to a mean maximum of 32.2 km at 3 p.m. The moderate
seasonal variation shows IRV to be highest in spring (Apr: 35.1 km) and lowest in late
summer and autumn (Oct: 28.3 km) (Fig. 1).

Four half years, two ‘winters’ (Nov—Apr) and two ‘summers’ (May—Oct) are
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Table 1

Symbols for weather wvariables used in
computing infrared visibility (I), and related
quantities

variable portion of visibility function

_ actual vapor pressure, mb
relative humidity, fractional (not %)
infrared visibility, km (also ‘IRV?)
mixing ratio, g/kg
atmospheric pressure, mb
correlation coefficient
dry bulb temperature, C
dry bulb temperature, K (=T + 273.15)
web bulb temperature, C
0.1 (wind speed —3.5)
visual range, km (when V' < 1 km)
precipitation intensity index (WW code)
wind speed m/s (= 10U + 3.5)

NEYNQHEONRTR NN ®

Table 2

Formulas for estimating infrared visibility (I) from concurrent weather-variables

E =6.108 exp [17.27%/(¥ + 237.3)] — 0.066 P(T — ¥)(1 — 0.00115 ¥)

H=E/6.108 exp [17.27T/(T + 2317.3)] '

M = 622E/(P — E) :

I = {0.000172 + [0.22B + 0.00225 + 0.00207M? + 10~° ® exp (1800/®) (9.834 — 0.4246 M +
1.3638 M2 — 0.005713M3))2}-12

V < 1km:B=391/V

¥ > 1km, wind < 10.5 m/s: B = W + (0.572992 + 0.403750U + 3.3178U2) (—0.49008 + 4.627H —
16.82449H2 + 29.8622H° — 25.9181 H* + 8.82561 H®)

V > 1km,wind > 10.5 m/s: B= W + (—22.55837 + 99.9136 U — 171.1637U? + 146.2984 U —
62.03601U* + 10.7387U%) (—1.9854 + 18,7238 H — 68.0895 H?* + 120.9162H* — 105.0134H* +
35,7888 H")

"‘present weather, ww’ precipitation intensity index, W
0 L 0.000
L0 T e L 0.035
60, 61, 66, 68,70, 71,80, 83,85,87,89,91,93 ... it i i e 0.200
62,63,72,73,81,84,095,06 ...iiuriiinti i i i et 0.600

64, 65,67,69,74,75,82,86,88,90,92,94,97-99 . ...... ...l 1.600

examined in detail. Letters designate these half years; the periods they cover and the
number of hours of data available out of the total possible are:

Time period Season Auvailable/Possible
‘A’ Nov 1961-Apr-1962 - ‘winter’ 3935/4344 90.6%
‘B’ May 1962-Oct 1962 - ‘summer’ 4235/4416 95.9%
‘c Nov 1962—-Apr 1963 ‘winter’ - 4232/4344 97.4%

‘D’ May 1963—Oct 1963 ‘summer’ . 4246/4416 96.2%
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Curmulative distribution of IRV (1961-1971).

Over these two years, the computed IRV ranged from 0.06 to 61.4 km, with the
mean for the 16 648 available observations at 31.2 km. Persistence of IRV, shown by
simple serial correlations, separately for each of the four periods, decreases fairly
smoothly from 0.8 for a 1-hour lag to 0.1 or 0.2 after 24 hours; the decrease is slower
than in a simple Markov process (Fig. 2).

2. Regressions

Simple and multiple regressions were used to find the best linear prediction equations
for selected time lags of 1 to 24 hours, and to evaluate the prediction accuracies of these
equations. For a simple regression based on IRV only, for period A the 1-hour lag
correlation of 0.79 indicates that 63% of the variance of IRV can be removed by
predicting it from the previous hour’s value:

IRV, = 6.61 + 0.792IRV,_,
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Figure 2
Autocorrelation of IRV.

Using three preceding hourly values improves the estimate only slightly, with a multiple
correlation of 0.81:

IRV, = 4.066 + 0.527IRV,_, + 0.205IRV, _, + 0.140IRV,_,

For the four periods the simple regression R? decreases to 62 to 65% at 1-hour lag, to 1
to 5% at 24-hour lag (Table 3). Thus the predictive power of the simple regression is
negligible for lags greater than 6 hours.

IRV may also be estimated by muitiple regression directly on the individual weather
elements used in its calculation. This procedure is much simpler than first computing
IRV for each hour and then using it in a regression. The basic formula (Table 2)
expreéses IRV as the inverse square root of the sums and products of various
polynomials, each involving one or more weather variables to assorted powers.
Nevertheless, for simplicity the six variables were first entered, by stepwise regression, in
linear combinations to express IRV. For zero lag, such a polynomial for period A, using
symbols defined in Table 1, is:

IRV,=7.15—1.64Y + 8.55T — 9.36%¥ — 21.1W + 0.203V + 0.034P

The multiple correlation of 0.92 yields a coefficient of determination of 0.85, to which
the several terms contribute, respectively, 0.482 (Y), 0.209 (T), 0.108 (¥), 0.045 (W),
and less than 0.01 for the last two (P, V).

A similar model for prediction 1 hour ahead in period A is:

IRV, =-31.0—-0.160Y + 7.287 — 8.20¥ — 3.92W + 0.179¥ + 0.073P

The multiple correlation of 0.81 is slightly more than the simple correlation of 0.79
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Table 3

Coefficients of determination (R*) and standard errors of prediction of
infrared visibility (km) by three regressions

/

Lag Period Simple Multiple Mult. expon.

1 A 0.62/10 0.65/10 0.66/10
B 0.65/8 0.64/5 0.67/8
C 0.65/9 0.65/9 0.66/9
D 0.68/8 0.63/8 0.66/8

3 A 0.47/12 0.49/12 0.50/12
B 0.48/10 0.52/9 0.54/9
C 0.50/11 0.52/11 0.52/11
D 0.51/9 0.50/10 0.51/9

6 A 0.29/14 0.32/14 : 0.33/44
B 0.34/11 0.39/10 0.40/10
C 0.33/13 0.36/13 0.37/13
D 0.32/11 0.31/11 0.33/11

12 A 0.14/15 0.16/15 0.16/15
B 0.16/12 0.22/12 0.22/12
C 0.14/15 0.16/15 ©0.18/14
D 0.10/13 0.12/13 0.13/13

24 A 0.04/16 0.04/16 0.06/16
B 0.05/13 0.08/13 0.09/13
C 0.02/16 0.04/15 0.05/15
D 0.01/14 0.02/14 0.02/14

-

obtained previously for predicting IRV from its value 1 hour earlier. For lags of 1 to 24
hours for the four periods, in most cases the amount of variation explained by this
regression is equal to or very slightly higher than the figures for the simple regression,
although the difference in R? ranges from a 5% improvement to a 5% detriment, and
none of the differences is significant at the 5% level (Table 3).

Conforming more fully to the basic formula is 2 multiple regression involving
various positive powers (3, 1, 1}, 2, 3, 4, 5) of the weather variables. Once again,
stepwise regression procedures were used, but for simplicity the resulting equations were
limited to only the most important variables, i.e. those which increase R? by 0.01 or
more. The results of this set of regressions are consistently better, by up to 3%, than
those from the unmodified weather variables (Table 3).

These are the best regressions, but the differences among the three types discussed
here are very slight. Other transformations, logarithmic and exponential, did not yield
better results. None of the regressions is very useful as a predictive tool. The 95%
confidence interval for the predicted IRV ranged from +31 km (24-hour lag) to +19 km
(1-hour lag) for the two winters, and from +27 km to +16 km for the two summers.
This differed only slightly according to the regression method used. -
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3. Discriminants

Two-group discriminant functions were sought for classifying or predicting IRV
categories, breaking at 2 km and 10 km. Discriminant analysis is a useful technique to
determine functions as linear combinations of a set of predictor variables, in order to
achieve not only the maximum group differentiations but also the minimum probability
of error in assigning cases to groups. A discriminant function is a vector which
maximizes the ratio of between-groups to within-groups sums of squares of discriminant
scores (JOHNSTON, 1978; TATSUOKA, 1971).

Classification can be achieved by using unstandardized discriminant functions in
conjunction with group centroids that are group means on discriminant functions. For
instance, the discriminant function for two IRV groups breaking at 2 km for period A
and zero lag, using six weather variables is:

IRV,=3.599 + 0.3157 — 0.271¥ — 0.004P — 0.054Y — 4.328W + 0.037V

The centroid is —2.671 for IRV < 2 km and 0.053 for IRV > 2 km. The midpoint of °
group centroids is —1.309. An hour for which this equation gives IRV > —1.309 is
classified as having IRV = 2 km. The overall accuracy of this equation is 93.7%, but
only 76 hours have IRV < 2 km in period A, accounting for 1.9% of the 3942 hours.
Therefore, the accuracy would be 98.1% even if every hour was classified as having IRV

> 2 km.

Despite the low frequency, the occurrence of IRV < 2 km is of concern; an objective
technique of predicting it is needed. Using the given discriminant function, approxi-
mately 62% (47 of 76 cases) of hours with IRV < 2 km are correctly classified. This
implies that the discriminant function has very little power for differentiating IRV
categories breaking at 2 km.

The low discriminant power is also evidenced by small canonical correlations and
high Wilks’ Lambda values for the various lag lengths and periods (Table 4). Canonical
correlation is the maximum correlation between the linear combination function of
independent variables and that of dependent variables that are coded 1 for IRV > 2 km
and O for IRV < 2 km. Wilks’ Lambda, the ratio of the within-groups to the total sum of
squares, is an inverse measure of discriminant power.

For separation at 10 km, the discriminant functions for two IRV categories yield
moderate discriminant powers, as evidenced by modestly high values of canonical
correlations and Wilks’ Lambda for zero lag. As with regression models, the
discriminant powers decrease as lag lengths increase, with very little predictive power
for lag lengths > 6 hours for IRV categories breaking at either 10 km or 2 km. This
varies little among the four periods.

Because of considerable differences in the sample sizes of IRV categories, Box’s M
statistic, employed to test the equality of group covariance matrices, showed significant
differences in group covariances at the 100% level, which implies that the discriminant
technique may not be an appropriate approach for group differentiations of IRV
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Table 4

Canonical correlations, Wilks’ Lambda, and accuracies of two-group discriminant functions with 2 km
and 10 km as breaking criteria for four half-year periods

2km 4 10 km
Lag Period Canon. Wilks Accur. Canon. Wilks Accur.
0 A 0.35 0.88 93.7 0.65 0.58 91.7 -
B 0.23 0.95 84.1 0.59 0.65 914
C 0.39 0.85 96.5 0.67 0.54 95.6
D 0.25 0.94 78.3 0.64 0.59 90.2
1 A 0.23  0.95 81.1 0.53 0.72 83.0
B 0.20 0.96 81.5 0.48 0.77 86.9
C 032 0.90 93.5 0.53 071 86.0
D 0.24 094 71.0 0.55 0.70 84.3
3 A 0.19 0.96 78.2 0.46 0.78 78.7
B 0.17 097 77.8 040 0.84 82.5
C. 0.27 0.93 91.0 045 0.80 80.5
D 0.23 095 76.5 0.48 0.77 80.7
6 A 0.15 0.98 74.7 0.39 0.84 4.5
B 0.15 0.98 73.2 0.34  0.86 78.8
C 0.23 095 88.0 0.36 0.87 73.8
D 0.20 0.96 71.6 0.36 0.87 73.8
12 A 0.10 0.99 66.8 0.30 0.90 69.7
B 0.12  0.99 71.5 0.21 0.95 70.9
C 0.17 097 84.4 022 0.95 63.8
D 0.13 098 64.6 0.18 097 63.6
24 A 0.10 0.99 65.0 0.19 - 0.96 64.3
B 0.09 0.99 68.3 - 0.18 0.97 70.0
C 0.10 0.99 73.9 0.14 0.98 63.1
D 0.10 0.99 59.7 0.10 0.99 58.2

categories breaking at 2 km or 10 km. Nevertheless, discriminant analysis provides
descriptive statistical associations between weather variables and IRV group mem-
bership. Furthermore, discriminant analysis may still be a useful technique for
differentiating IRV categories of almost equal sample size.

4. Conclusions

Standard statistical procedures cannot produce useful predictions of IRV; predictive
power is limited for time lags up to 6 hours and almost nonexistent for longer lags.
Surprisingly, IRV can be predicted slightly more precisely, at any lag, by a linear
combination of antecedent weather variables than by their combination into IRV and
the use of a simple lag correlation.

While persistence and linear regression appear to have inadequate predictive power
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for IRV, more refined statistical procedures may be more effective. These would be
similar to the Machine Qutput Statistics (‘MOS’) used by the National Weather Service
to predict local temperatures, rainfall, and other variables from forecast heights of the
700 and 500 millibar surfaces at various gridpoints. In actual operation, each
temperature is predicted by a linear regression on predicted heights at ten nearby
gridpoints. Perhaps IRV can be predicted similarly from large-scale synoptic forecasts.
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