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1. Introduction

he field Equivalence Principle, one of the fundamental con-

cepts in electromagnetics, has numerous applications. How-
ever, for a beginning student, it is not easy to understand this con-
cept thoroughly and to appreciate it. The dilemma faced by begin-
ning students is illustrated by the example problem shown in Fig-
ure la. Here, we have sources in a finite Region [, and an arbitrary
mathematical surface separating Regions I and II. The equivalent
problems for the exterior and interior regions are specified in Fig-
ures 1b and le, respectively, with the use of electric and magnetic
equivalent currents impressed on the boundary surface. The
acceptance of the establishment by the equivalent sources of the
non-intuitive null field for the exterior problem (by the equivalent
sources and the original source for the interior problem) is com-
monly bothersome and not comfortably realized. In order to clarify
this, we revisit Love’s and Schelkunoff’s forms of the Equivalence
Principle. Subsequently, we discuss two simple, analytically trac-
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table illustrative examples, consisting of plane-wave fields in two
half-space regions, separated by an infinite planar surface. In par-
ticular, the emphasis will be on the establishment of the non-intui-
tive null fields developed by these equivalent sources. Various
forms of equivalence will be illustrated by simple analytical field
expressions. We believe that this tutorial presentation will be help-
ful to students and faculty.

2. Love’s and Schelkunoff’s
Field Equivalence Principle

Let us consider two regions, denoted by T and II, and sepa-
rated by a boundary surface, S, which may be an arbitrary mathe-
matical surface, as shown in Figure 2. For simplicity, it is assumed
that Region I contains sources J, and M, and that Region II is
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Figure 1. An illustration of the field Equivalence Principle: (a) The original problem containing sources in
Region I and an arbitrary mathematical surface dividing Regions I and II; (b) Equivalence for the external
problem; (c) Equivalence for the internal problem. Note the establishment of the null fields in these cases.
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Figure 2. The geometry of the problem.
IT €os#0
£, H

Figure 3. Love’s equivalence for Region II.

source-free. Let us assume that Region II is frce space, and that
Region I contains some material of constitutive parameters ¢ and
I

By invoking Love's Equivalence Principle [1], we can con-
sider a problem cquivalent to one of these regions, e.g., Region II,
as shown in Figure 3. In this case, the original material in Region 1
is replaced by free space, and the sources arc removed. Equivalent
electric and magnetic currents, given below, are suspended in
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space on the surface S. These are related to the tangential compo-
nents of the fields on the surface:

]S1=ﬁx1-7,

where # is a unit normal vector, directed from S towards
Region II.

The equivalent currents, radiating into free space, produce the
correct original fields in Region I1, and they produce null fields in
Region 1. The null fields produced by these sources are commonly
bothersome and not comfortably accepted.

An equivalent problem may be set up for Region I, as shown
in Figure 4 [1]. In this case, Region I is filled up with the same
material as in Region I of the original problem, in Figure 2. We
place equivalent currents on S, which are the negative of what we
had in Figure 3. These equivalent currents will satisfy the boundary
conditions for this problem, shown in Figure 4. Thus, the equiva-
lent currents and the original sources, radiating in a homogeneous

Il &xu

E=0=H

Vsl
S _M sl
Figure 4. Love’s equivalence for Region L.
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Figure 5. Schelkunoff’s equivalence for Region II, with a PEC
in Region 1.
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Figure 6. Plane-wave propagation in a homogeneous region.

medium of constitutive parameters ¢ and u, will radiatc the cor-
rect fields in Region I; whereas in Region II, they produce null
fields. Again, the null fields produced by thesc sources are com-
monly bothersome and not comfortably accepted.

The validity of both forms of equivalence follows from the
fact that the fields in each region satisfy Maxwell’s equations, and
that the boundary conditions for the tangential components of the
fields are satisfied on the surface S. Thus, the uniqueness condi-
tions for electromagnetic fields are satisfied [2, 3]. Stratton and
Chu have also rigorously derived the Equivalence Theorem [4].
For a beginning student, it is hard to visualize the fact that the
equivalent currents in Figure 3 produce the correct fields in
Region I1, whereas they produce null fields in Region I. Similarly,
it is hard to visualize the fact that the equivalent fields produce the
scattered fields in Region I in Figure 4, whereas in Region II they
produce the negative of the incident ficlds.

We can construct variations of the Equivalence Principle by
placing different media, sources, and/or ficlds in the unwanted
region, e.g., in Region I in Figure 3, provided they satisfy Max-
well’s equations. The equivalent currents must satisfy the boundary
conditions. However, in many applications, we consider placing a
perfect electric conductor (PEC) or perfect magnetic conductor
(PMC) in the region containing null fields. Let us consider Figure
3. We can place a PEC medium in Region I. This will not affect
the fields in Region I, since there is no interaction of the null fields
and any material medium. The fields in Region II will also be unaf-
fected, since the boundary conditions at S are still satisfied. We can
use the Superposition Principle to find the fields produced by the
two equivalent currents. It is noted that these are impressed cur-
rents, and not induced currents. The tangential clectric currents
impressed on a PEC surface will not radiate. This can be proven

rigorously from the Lorentz Reciprocity Theorem [2], and is dis-
cussed in Appendix 1. We are left with the problem of finding the
fields produced by the magnetic currents on the PEC surface S, as
illustrated in Figure 5. This form of equivalence is referred to as
Schelkunoff’s Equivalence Principle [2, 5, 6]. While this problem
may be formulated as an integral equation and solved numerically
for the general case, a simple analytical problem is discussed in
Section 3.2. We can obtain an equivalent problem, similar to Fig-
ure 5 but with an electric equivalent current on a PMC surface, S.
It is possible to have two more equivalent problems for Figure 4,
with the use of PECs or PMCs in Region II.

3. An Example of a Homogeneous Medium

We now discuss analytically tractable, illustrative examples
of plane-wave propagation in simple geometries. The first example
uses a homogeneous medium, and the seccond uses two different
media, with a planar boundary normal to the propagation direction.

Let us consider two half-space regions, denoted by I (z <0)
and II (z>0), with a source at z=—w producing plane-wave
fields, as shown in Figure 6. The infinite plane at z =0 separates
the two regions. The medium in both regions is free space. There is
no scattering, and, hence, the total ficlds everywherc are the inci-
dent fields:

E’inc — )ACEOGM/I(OZ
(D
];'yinc — 5)&0—jkoz
Zy
In Equation (1), ky =2/, (where A, is thc free-space wave-
length) is the wavenumber, and Z, (=./#y/&, ) is the intrinsic
impedance of free space.

3.1 Love’s Equivalence Principle

3.1.1 Equivalence to Region Il

The equivalent currents on the boundary surface, S (z=0) in
Figure 7 are given by

I ZO’kO II ZO’kO
No source
z<0 z>0
1 jvl
Null Field ¢
Msl

Figure 7. Love’s Equivalence Principle applied to Region II.
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Figure 8. Love’s Equivalence Principle applied to Region I.
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Figure 9. Schelkunoff’s Equivalence Principle applied to
Region I1.
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M, =—-AxE=-3x3Ey = —JE,.

The fields produced by the electric current [2] may be obtained
easily in closed form from the magnetic vector potential (see
Appendix 2), and are given below:

z<0 z>0
E=ifo g i :,efg_@wkoz
3
ﬁ:_)}_ﬂ.eﬂ(oz 1{:_); 0 e—jkoz
27 27,

These fields satisfy Maxwell’s equations and the boundary condi-
tions on S.

Fields produced by the magnetic equivalent current [2] may
be obtained by duality:

z<0 z2>0
E‘:_;C_Eerkoz E':)Q,ﬂe—jkoz
@)
H =)A’%ejk°z H :)3%6~,/ka
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From Equations (3) and (4) we obtain the total fields produced by
the two equivalent currents given in Equation (5). These are null
fields in Region I, and the incident fields in Region II.

z<0 z>0

E‘ =0 E - Einc

B )
H=0 ﬁ - f"inc

Note that one cannot simply use the argument of symmetry, and
state that the surface-current sheet should radiate symmetrically on
both sides! The electric- and magnetic-current sheets produce dif-
ferent (odd and even) types of symmetry for the fields.

3.1.2 Equivalence to Region |

We now have the original sources producing the incident
fields, and the equivalent currents, given below, on S. The equiva-
lence to Region 1 is shown in Figure 8.

—.X‘=—J§.|,

) ©)
My =2x%Ey = pEy =M.

Clearly, the fields produced by the equivalent currents are the
negative of the fields given by Equations (3) through (5). Thus, the
contributions of the equivalent currents are found to be null fields
in Region I, and the negative of the incident fields in Region II.
Therefore, the total field in Region I is the incident field, and that
in Region IT is zero.

3.2 Schelkunoff’'s Equivalence Principle

3.2.1 Equivalence to Region |l

Consider Love’s Equivalence Principle applied to Region II
above, in Section 3.1.1, and shown in Figure 9. Since Region I has
null fields, PEC material may fill up Region I without affecting the
fields in Regions I and II. The equivalent electric and magnetic
currents are on the PEC surface, S. Clearly, the electric currents
will not radiate (in this situation only, one may also apply the
image theory to justify this observation). The fields produced by

.. PEC
Original

1 7.k
Sources o Il

z<0 z>0

‘\ Null Field
“M.ﬂ

Figure 10. Schelkunoff’s Equivalence Principle applied to
Region 1.

125



Original _}
Sources I I

£0> Ho» Zo>ko &, > 215k

z<0

Figure 11. Plane-wave propagation normal to the interface
between two dielectric media.
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Figure 12. The equivalence for Region IL.
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Figure 13. The equivalence for Region I.

the magnetic equivalent currents on the PEC surface may be
obtained by using the Image Principle. We have twice as much
magnetic equivalent current as on the z=0 boundary in Figure 7.
These magnetic currents radiate in free space. The fields in Region
IT are twice those given by Equation (4). These are the original
incident fields. The fields in Region I are fictitious while using the
Image Principle.

3.2.2 Equivalence to Region |

As illustrated in Figure 10, we have PEC material in
Region II, Region I contains the original sources at z = —c, and
the equivalent currents on S. The electric currents on the PEC will

not radiate. The total field consists of three parts: the original inci-
dent fields, the reflected fields produced by the reflection of the
incident fields on the PEC surface S, and the fields radiated by the
doubled equivalent magnetic currents in a homogeneous medium.
The last component is due to the application of the Image Princi-
ple, and it is twice the negative of the amount given by Equa-
tion (4). The reflected fields and the fields produced by the mag-
netic currents, given below, for Region I are found to be the nega-
tive of each other:

EY = —%Ege” koz

gref _ }A}_Egejkoz
Zy
)
E (—2A;fs] ) = RE et

i(-2Mg)=- p%eﬂ‘oz

Thus, the total fields in Region I are the original incident fields
given by Equation (1).

The Duality Principle may be invoked to obtain the fields for
the problem of Schelkunoff’s equivalence, using PMC media in the
null regions.

4. Examples of Plane Wave Propagation
in Two Different Media

4.1. Plane Wave Propagation Normal
to a PEC Boundary

In the original problem discussed in Section 3, let Region II
consist of PEC: now, the tangential electric field is zero on S. We
only have the electric equivalent current, equal to twice the nega-
tive of the value given by Equation (2), and located on S. Clearly
this current will produce twice the negative value of the field given
by Equation (3) in Region I (z <0). This is indeed the reflected
field given by Equation (7), so that the total field is the incident
field plus the reflected field. The field produced by the electric
equivalent currents in Region 1l is the negative of the incident
field, and thus the total field in Region II will be zero. It is noted
that the equivalent problem yields the actual null fields in the con-
ductor.

4.2. Plane-Wave Propagation
Normal to a Boundary Between
Two Different Dielectric Media

Let Region 11 consist of a material of intrinsic impedance 7,
and wavenumber k), and let Region [ consist of free space, as
shown in Figure 11. The actual ficlds in the two regions are given

by [2]
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z<0 z>0

E = 3E, (70" + 1) F=3py(14T)e Mz (®)
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where I' = (Z, - Zo) (2, +Z) -

4.2.1 Equivalence to Region |l

Figure 12 shows the equivalent problem valid for Region IL
The equivalent currents on S are given by

T =ixi=2x 9014y = -2 (14T,
(10)

Mg =—Ax E=~z><xEo(1+r)“7yE0(l+r)

These equivalent currents radiatc in a homogeneous region con-
taining a medium of intrinsic impedance Z; and wavenumber £;.

The fields produced by the electric currents in the two
regions are obtained by inspection of Equation (3):

z<0 z>0
- £y
2

E=%

(1+T)efh? E:k%(ur)e‘f"'z

1

H= 14 0)e bz
yzzl( +D)e

. E ”
H=-p9(1+T)e/"?
Y2z (1+1)
Similarly, the fields produced by the magnetic equivalent currents
are obtained from an inspection of Equation (4), and arc given in
Equation (12):

z<0 z>0
E=—fc%(l+r)eﬂ“z E=% %(HF) k2
(12)
= E ; . E )
H=35=C(1+T)e/" H =520 (14 1)e/h?
yzZ,(+ Je yzz,(+ Je

Thus, the total fields in Region II are the same as those given by
Equation (9), and the fields in Region I are null fields. It is noted
that Region [ has the same material as that of Region II, in this
equivalence.

4.2.2 Equivalence to Region |

We now have cquivalent currents on S that arc the negative
of those in Equation (10). The medium in Region [I is replaced by
free space, the same as that in Region I, since we have null fields in
Region [I. Equations (13) and (14) give the fields produced by the
clectric and magnetic cquivalent currents, respectively, as shown in
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Figure 13. In Equation (13), we have used the expression for the
electric current in the form

= ~ E
S a= 0O -T
@7 Zo( )

1+TI ~1
since ( > ) ( -) , obtained by matching 7/, at z=0 in
21
Equations (8) and (9).
z<0 z>0
P -fc%(l— r) el i= —fc%(l —I)e o
13)
=y (o) el 1T =950 (1-r)emir
27, 2z,
z<0 z>0
E=z %(1“) T E:—i—Ezﬁ(Hr)e*f"oz
(14)
Ey

]?:~y—-—(]+f) oz ﬁl:—y 0 (1+l)e Jho

The sum of the fields produced by the two equivalent currents in
Region I are the reflected fields. With the addition of the incident
fields, we obtain the correct total fields in this region. In Region II,
the fields of Equations (13) and (14) add to yield the negative of
the incident fields, so that the total fields are zero in this region.

Schelkunoff’s equivalence may be obtained such that only
one of the two equivalent currents is non-zero. When employed for
equivalence in Region I, care must be exercised to include the
appropriate reflected fields.
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6. Appendix 1
Proof that the Impressed Currents on a
PEC Surface Do Not Produce Any Fields

The Lorentz Reciprocity Theorem takes the following form,
when the domain of the problem is infinite space [2]:

[J(Ee® —Hept®)ay = [ [ [(EPoJ« - P -M*)av . (15)
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In this equation, the integration extends over the volume where the
sources are present. The superscript a refers to one set of sources
and the corresponding fields, and the superscript & refers to a scc-
ond set. Let the a source be the tangential impressed electric cur-
rent placed on a PEC, and let the b source be a Hertzian electric
dipole at any point in space. The tangential £ field produced by
the Hertzian dipole on the PEC is zero (the boundary condition on
the PEC). Therefore, the right-hand side of Equation (15) is zero,
since the integration is carried out over the region of @ sources, i.e.,
the PEC.

The integral of the left-hand-side term, which is proportional
to the electric field produced by the impressed electric current on
the PEC at the location of the Hertzian dipole and along the dipole,
is also zero. By choosing the Hertzian dipole at different locations
and with different orientations, we can show that the electric field
produced by the impressed electric current on the PEC is zero eve-
rywhere. Similarly, by choosing a magnetic dipole for the b source,
we can show that the magnetic field produced by the impressed
electric current on a PEC is zero, although this result is obvious
when the E field is zero everywhere.

6. Appendix 2
The Fields of a Planar Current

The planar current is given by

j=—3to
Zy

The magnetic vector potential is [3]
- _ kR
A=L2[[75—as'.

4z 4zR

Then,

22 b5 dpdd
% ———pldpla
Zy 4 b /p'2+22

3 B0 oj'_i d [e‘f’fn Vo4 ]

22y 2 ) ko

= ﬁ%;_[lé;_(gifkoz) .

The integral vanishes at the upper limit with the assumption of a
small loss in the medium. In the limiting case of vanishing losses,
the result is still valid. Then,

E= —ja);l
since
Ved=0,
and
2
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