Chapter 6

Solutions to Supplementary Check for Understanding Problems

Formation of Aqueous Solutions

1. A teaspoon of salt will readily dissolve in a pot of water. What happens to the salt concentration as the solution boils? Explain.

Solution

The salt solution increases. As the water boils the solution volume decreases while the amount of the salt does not change. This means there is more salt per liter of solution which represents a higher salt concentration.
2. Describe how an ionic compound dissolves in water. How are the strong electrostatic forces in the ionic solid overcome? How are the dissolved cations and anions prevented from recombining to form the solid?

Solution

When an ionic compound dissolves in water the cations and anions become separated and the individual ions are surrounded by water molecules. The initial electrostatic attractions between cations and anions are overcome by the electrostatic attractions of the ions to many polar water molecules. The dissolved ions are surrounded by layers of water molecules which limit the ability of the cations and anions to interact and reform the solid.
3. Use the model for an ionic compound dissolving in water to explain why smaller solute particles dissolve faster than large ones.

Solution

When an ionic compound dissolves in water only the cations and anions on the surface of the particles of the solute interact with polar water molecules and eventually become separated and surrounded by solvent. For a given amount of solute, as large particles are broken up into smaller ones new surfaces are exposed and there is an increase in the overall surface area which can interact with the water solvent so these smaller particles dissolve faster than larger ones.
4. Why is a concentrated solution of an ionic compound a good conductor of electricity?

Solution

Electrical conductivity involves the movement of electric charges in the form of ions or electrons A concentrated solution of an ionic compound has many dissolved ions. This large number of mobile charges enables such a solution to conduct electricity readily.

S.6.5 CHAPTER 6

5. Why is a sugar solution a very poor conductor of electricity?

Solution

When sugar dissolves the sugar molecules become separated and surrounded by water molecules. However, there are no mobile charges created so the solution does not conduct electricity readily.
6. What does the label "concentrated HNO_{3} " on a bottle mean?

Solution

A solution labeled concentrated HNO_{3} means that there is a large number of (often the maximum number of) moles of solute $\left(\mathrm{HNO}_{3}\right)$ per liter of solution.

Solution Mass Percent

1. An aqueous NaCl solution that is 3.2% by mass NaCl contains \qquad g NaCl for every \qquad g water.

Answers: $\quad 3.2 \mathrm{~g} \mathrm{NaCl}$

$$
96.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Solution

Recall that solute mass \% $=\frac{\text { solute mass }}{100 \text { g solution }}=\frac{\text { solute mass }}{\text { solvent mass + solute mass }}$
Therefore, in 100 g solution there will be 3.2 g NaCl and $96.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
2. Calculate the mass in grams of KCl in 18.6 g of a solution that is $0.15 \% \mathrm{KCl}$ by mass.

Answer: $\quad 0.28 \mathrm{~g}$

Solution

What we know: g solution; g KCl/100 g solution
Desired answer: $\quad \mathrm{g} \mathrm{KCl}$
The solution map for this problem is:

$$
\mathrm{g} \text { solution } \rightarrow \mathrm{g} \mathrm{KCl}
$$

S.6.6 CHAPTER 6 SOLUTIONS TO SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

Remember that the mass percent of KCl refers to the g of KCl per 100 g of solution. This is exactly the conversion factor needed for this calculation. Applying this yields:
18.6 gsolm $x \frac{0.15 \mathrm{~g} \mathrm{KCl}}{100 \text { gsolm }}=0.028 \mathrm{~g} \mathrm{KCl}$
3. What mass of a solution that is 4.8% by mass NaHCO_{3} is needed to obtain 75 g NaHCO_{3} ?

Answer: $\quad 1.6 \times 10^{3} \mathrm{~g}$

Solution

What we know: $\quad \mathrm{g} \mathrm{NaHCO}_{3} ;$ g $\mathrm{NaHCO}_{3} / 100 \mathrm{~g}$ solution
Desired answer: g solution
The solution map for this problem is:

$$
\mathrm{g} \mathrm{NaHCO} 33 \mathrm{~g} \text { solution }
$$

The conversion factor needed for this calculation is the mass $\%$ in the form $\frac{100 \mathrm{~g} \text { solution }}{4.8 \mathrm{~g} \mathrm{NaHCO}_{3}}$. Applying this yields:
$75 \mathrm{~g} \mathrm{NaHCO}_{3} \times \frac{100 \mathrm{~g} \text { solution }}{4.8 \frac{\mathrm{NaHCO}}{3}} \mathbf{~}=1.6 \times 10^{3}$ g solution

S.6.7 CHAPTER 6 SOLUTIONS TO SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

Molarity

1. Which of the following are needed to calculate the molarity of an aqueous solution? Select all that apply. Explain your answer.
A. the mass of the solute
B. the molar mass of the solute
C. the volume of water added
D. the total volume of the solution
E. the solution density

Answer: A, B and D

Solution

Solute molarity is calculated by: $\frac{\text { molsolute }}{\operatorname{soln} \text { volume }(\mathrm{L})}=\frac{\frac{\text { mass solute }}{\text { molar masssolute }}}{\text { soln volume }(\mathrm{L})}$. Therefore, the information indicated in A, B and D is needed.
2. What is the sodium ion molarity in a $0.115 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ solution?

Answer: $\quad 0.345$ M

Solution
What we know: $\quad \mathrm{mol} \mathrm{Na}_{3} \mathrm{PO}_{4} / \mathrm{L}$ solution
Desired answer: mol Nat/ solution
The solution map for this calculation is:

$$
\frac{\mathrm{mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}{\mathrm{~L} \text { soln }} \rightarrow \frac{\mathrm{mol} \mathrm{Na}^{+}}{\mathrm{L} \text { soln }}
$$

The formula of the solute indicates that in 1 mole of sodium phosphate there are 3 moles of sodium ions. This relationship can be applied as follows.

S.6.8 CHAPTER 6 SOLUTIONS TO SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

$\frac{0.115 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}{\mathrm{~L} \mathrm{soln}} \times \frac{3 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}=\frac{0.345 \mathrm{~mol} \mathrm{Na}^{+}}{\mathrm{L} \mathrm{soln}}=0.345 \mathrm{M} \mathrm{Na}^{+}$
3. What is the molarity of a solution prepared from $5.62 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolved in water and diluted to 125 mL ?

Answer: $\quad 0.562$ M
Solution
What we know: $\quad \mathrm{g} \mathrm{NH}_{4} \mathrm{NO}_{3} ; \mathrm{mL}$ solution
Desired answer: $\quad \mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3} / \mathrm{L}$ solution
The solution map for this calculation is:

$$
\frac{\mathrm{g} \mathrm{NH}_{4} \mathrm{NO}_{3}}{\mathrm{~mL} \text { soln }} \rightarrow \frac{\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{\mathrm{~mL} \text { soln }} \rightarrow \frac{\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{\mathrm{~L} \text { soln }}
$$

The conversion factor needed in the first step is the molar mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in the form $\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.05 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}}$.

The conversion factor for the second step is $\frac{1 \mathrm{~mL} \text { soln }}{10^{-3} \mathrm{~L} \text { soln }}$.
Putting these together yields:
$\frac{5.62 \mathrm{~g} \mathrm{HH}_{4} \mathrm{NO}_{3}}{125 \mathrm{~mL} \text { solm }} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.05 \frac{\mathrm{NH}_{4} \mathrm{NO}_{3}}{8}} \times \frac{1 \mathrm{~mL} \text { soln }}{10^{-3} \mathrm{~L} \text { soln }}=\frac{0.562 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{\mathrm{~L} \text { soln }}$
4. What volume (in mL) of a 0.204 M NaOH solution contains 8.53 g NaOH ?

Answer: $\quad 1.05 \times 10^{3} \mathrm{~mL}$

Solution

What we know: \quad g NaOH; mol $\mathrm{NaOH} / 1000 \mathrm{~mL}$ solution
Desired answer: mL solution

S.6.9 CHAPTER 6 SOLUTIONS TO SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

The solution map for this calculation is:

$$
\mathrm{g} \mathrm{NaOH} \rightarrow \mathrm{~mol} \mathrm{NaOH} \rightarrow \mathrm{~mL} \text { solution }
$$

The conversion factor needed in the first step is the molar mass of NaOH in the form $\frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaOH}}$.

The conversion factor needed in the second step is the solution concentration in the form $\frac{1000 \mathrm{~mL} \text { soln }}{0.204 \mathrm{~mol} \mathrm{NaOH}}$.

Putting these together yields:
$8.53 \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.00 \mathrm{NaOH}} \times \frac{1000 \mathrm{~mL} \text { soln }}{0.204 \mathrm{~mol} \mathrm{NaOH}}=1.05 \times 10^{3} \mathrm{~mL}$ soln
5. How many moles of NaF are present in 22.9 mL of a 5.16 mM NaF solution?

Answer: $\quad 1.18 \times 10^{-4} \mathrm{~mol}$
Solution
What we know: mL solution; $\mathrm{mmol} \mathrm{NaF} / 1000 \mathrm{~mL}$ solution
Desired answer: mol NaF
The solution map for this calculation is:
mL solution \rightarrow mmol NaF \rightarrow mol NaF
The conversion factor needed in the first step is the solution concentration in the form $\frac{5.16 \mathrm{mmol} \mathrm{NaF}}{1000 \mathrm{~mL} \text { soln }}$.
The conversion factor needed in the second step is $\frac{10^{-3} \mathrm{~mol} \mathrm{NaF}}{1 \mathrm{mmol} \mathrm{NaF}}$.

Putting these together yields:
22.9 mLsoln $\times \frac{5.16 \mathrm{mmol} \mathrm{NaF}}{1000 \mathrm{mLsolm}} \times \frac{10^{-3} \mathrm{~mol} \mathrm{NaF}}{1 \mathrm{mmol} \mathrm{NaF}}=1.18 \times 10^{-4} \mathrm{~mol} \mathrm{NaF}$
6. What mass of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is needed to prepare 75.0 mL of a $0.226 \mathrm{M} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution?

Answer: $\quad 2.27$ g
Solution
What we know: mL solution; $\mathrm{mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} / 1000 \mathrm{~mL}$ solution
Desired answer: $\quad \mathrm{g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ needed
The solution map for this problem is:

$$
\mathrm{mL} \text { solution } \rightarrow \mathrm{mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}
$$

The conversion factor needed in the first step is the solution concentration in the form $\frac{0.226 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}{1000 \mathrm{~mL} \text { soln }}$.

The conversion factor needed in the second step is the molar mass of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the form $\frac{134.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}$.

Putting these together yields:
75.0 mL solm $\times \frac{0.226 \mathrm{~mol} \mathrm{ma}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}{1000 \mathrm{~mL} \text { solm }} \times \frac{134.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}=2.27 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
7. What is the nitrate ion molarity in a solution prepared from 26.8 mg aluminum nitrate dissolved in water and diluted to 0.750 L ?

Answer: $\quad 5.03 \times 10^{-4} \mathrm{M}$

Solution

What we know: $\quad \mathrm{mg} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$; L solution
Desired answer: $\quad \mathrm{mol} \mathrm{NO}_{3}{ }^{-} / \mathrm{L}$ solution
The solution map for this calculation is:

$$
\frac{\mathrm{mg} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{\mathrm{~L} \text { soln }} \rightarrow \frac{\mathrm{g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{\mathrm{~L} \text { soln }} \rightarrow \frac{\mathrm{mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{\mathrm{~L} \text { soln }} \rightarrow \frac{\mathrm{mol} \mathrm{NO}_{3}^{-}}{\mathrm{L} \text { soln }}
$$

The conversion factor needed in the first step is $\frac{10^{-3} \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1 \mathrm{mg} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}$.
The conversion factor needed in the second step is the molar mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ in the form

$$
\frac{1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}} .
$$

The conversion factor for the last step is $\frac{3 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-}}{1 \mathrm{~mol} \mathrm{Al}_{\left(\mathrm{NO}_{3}\right)_{3}}}$.
Putting these together yields:

8. What is the density of a $15.8 \mathrm{M} \mathrm{HNO}_{3}$ aqueous solution if it is 70.4% by mass HNO_{3} ?

Answer: $\quad 1.41$ g/mL

Solution

What we know: $\quad \mathrm{mol} \mathrm{HNO}_{3} / 1000 \mathrm{~mL}$ solution; $\mathrm{g} \mathrm{HNO}_{3} / 100 \mathrm{~g}$ solution
Desired answer: $\quad \mathrm{g}$ solution/mL solution
The solution map for this problem is:

$$
\frac{\mathrm{mol} \mathrm{HNO}_{3}}{\mathrm{~mL} \text { soln }} \rightarrow \frac{\mathrm{gHNO}_{3}}{\mathrm{~mL} \text { soln }} \rightarrow \frac{\mathrm{g} \text { soln }}{\mathrm{mL} \text { soln }}
$$

The conversion factor needed in the first step is the molar mass of HNO_{3} in the form $\frac{63.02 \mathrm{~g} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{HNO}_{3}}$.

The conversion factor needed in the second step is the solute mass percent in the form

$$
\frac{100 \mathrm{~g} \text { soln }}{70.4 \mathrm{~g} \mathrm{HNO}_{3}}
$$

Putting these together yields:
$\frac{15.8 \mathrm{molHNO}_{3}}{1000 \mathrm{~mL} \mathrm{soln}} \times \frac{63.02 \mathrm{~g} \mathrm{HNO}_{3}}{1 \mathrm{molHNO}_{3}} \times \frac{100 \mathrm{~g} \text { soln }}{70.4 \mathrm{gHNO}_{3}}=\frac{1.41 \mathrm{~g} \text { soln }}{\mathrm{mL} \mathrm{soln}}$

Dilutions

1. Explain why the equation $M_{1} V_{1}=M_{2} V_{2}$ works for solving dilution problems.

Solution
When a solution is diluted the number of moles of solute remains constant while the solution volume increases, thus leading to a decrease in solute concentration. The number of moles of solute equals its molarity (M) times the solution volume (V) so the starting number of solute moles ($M_{1} V_{1}$) will equal the moles of solute after dilution $\left(M_{2} V_{2}\right)$.
2. If a salt solution is diluted by adding a volume of water equal to 50% of the solution volume, by what factor has the salt concentration been diluted? Assume that the volumes are additive.

Answer: 2/3

Solution

What we know: relationship between the initial volume and final volume
Desired answer: dilution factor $\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$

Although no numerical value is given for V_{1} or V_{2} we know the relationship between the initial volume: $\mathrm{V}_{2}=\mathrm{V}_{1}+1 / 2 \mathrm{~V}_{1}$. Substituting for V_{2} in the dilution factor ratio yields:
$\frac{V_{1}}{V_{2}}=\frac{V_{1}}{V_{1}+\frac{1}{2} V_{1}}=\frac{V_{1}}{\frac{3}{2} V_{1}}=\frac{2}{3}$
3. How many milliliters of $14.8 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ are needed to prepare 2.50 L of $3.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

Answer: $\quad 507 \mathrm{~mL}$

Solution

What we know: initial concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}\left(\mathrm{M}_{1}\right)$; final concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution $\left(\mathrm{M}_{2}\right)$; final volume of $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution $\left(\mathrm{V}_{2}\right)$

Desired answer: initial volume of the more concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution $\left(\mathrm{V}_{1}\right)$
Note that this is a dilution problem. Solve the dilution equation for V_{1}. It is useful to first convert the final volume to milliliters.

$$
\begin{aligned}
& 2.50 \mathrm{\Psi} \times \frac{1 \mathrm{~mL}}{10^{-3} \mathrm{E}}=2.50 \times 10^{3} \mathrm{~mL} \\
& V_{1}=\frac{M_{2} V_{2}}{M_{1}}=\frac{\left(\frac{3.0 \mathrm{molH}_{3} \mathrm{PO}_{4}}{1000 \mathrm{~mL} \text { dilsolm }}\right)\left(2.50 \times 10^{3} \mathrm{~mL} \text { dilsoln }\right)}{\left(\frac{14.8 \mathrm{molH}_{3} \mathrm{PO}_{4}}{1000 \mathrm{~mL} \text { concsoln}}\right)}=507 \mathrm{~mL} \text { concsoln }
\end{aligned}
$$

Solution Stoichiometry

1. Barium sulfate is an exception to the rule that sulfates tend to be soluble in water. How many milliters of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are needed to precipitate all of the barium as BaSO_{4} from 10.0 mL of $0.15 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~g}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Answer: $\quad 6.0 \mathrm{~mL}$

Solution

What we know: $\quad \mathrm{mol}_{2} \mathrm{Na}_{2} \mathrm{SO}_{4} / 1000 \mathrm{~mL}$ solution; $\mathrm{mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution; mol $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} / 1000 \mathrm{~mL}$ solution; balanced equation relating $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Desired answer: $\quad \mathrm{mL} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution
The solution map for this calculation is:

$$
\mathrm{mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \text { soln } \rightarrow \mathrm{mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~mL} \mathrm{Na} \mathrm{SO}_{4} \text { soln }
$$

The conversion factor needed in the first step is the $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution concentration in the form

$$
\frac{0.15 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{3}}{1000 \mathrm{~mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{3} \text { soln }}
$$

The conversion factor needed in the second step is the $\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ mole ratio from the balanced equation.

The conversion factor in the last step is the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution concentration in the form

$$
\frac{1000 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{SO}_{4} \text { soln }}{0.25 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}
$$

Putting these together yields:
$10.0 \mathrm{~mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ soln $x \frac{0.15 \mathrm{molBa}\left(\mathrm{NO}_{3}\right)_{2}}{1000 \mathrm{~mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \operatorname{solm}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{molBa}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1000 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{SO}_{4} \text { soln }}{0.25 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=6.0 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{SO}_{4}$ soln
2. If 35.0 mL of a $0.162 \mathrm{M} \mathrm{CaCl}_{2}$ solution are added to 20.0 mL of $0.211 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$, what is the maximum number of moles of CaCO_{3} that can form?

Answer: $\quad 0.00422 \mathrm{~mol}$

Solution
What we know: $\quad \mathrm{mol} \mathrm{CaCl} / 1000 \mathrm{~mL}$ solution; $\mathrm{mL} \mathrm{CaCl}_{2}$ solution; $\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3} / 1000 \mathrm{~mL}$ solution; $\mathrm{mL} \mathrm{Na} \mathrm{CO}_{3}$ solution;

Desired answer: maximum mol CaCO_{3} produced

A balanced equation for this double displacement reaction is needed.

$$
\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

First determine the limiting reactant by calculating how many moles of CaCO_{3} can possibly be produced from each starting amount of reactant. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{mL} \mathrm{CaCl}_{2} \text { soln } \rightarrow \mathrm{mol} \mathrm{CaCl}_{2} \rightarrow \text { mol CaCO} \\
& 3 \\
& \mathrm{~mL} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { soln } \rightarrow \mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~mol} \mathrm{CaCO}_{3}
\end{aligned}
$$

For the first calculation the conversion factors needed are the molarity of the CaCl_{2} solution and the $\mathrm{CaCO}_{3} / \mathrm{CaCl}_{2}$ mole ratio.

Putting these together yields:

$$
35.0 \mathrm{mLCaCl} 2 \text { soln } x \frac{0.162 \mathrm{molCaCl}_{2}}{1000 \mathrm{~mL} \mathrm{CaCl}_{2} \operatorname{solm}} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{1 \mathrm{molCaCl}_{2}}=0.00567 \mathrm{~mol} \mathrm{CaCO}_{3}
$$

For the second calculation the conversion factors needed are the molarity of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the $\mathrm{CaCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ mole ratio.

Putting these together yields:

$$
20.0 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { solm } x \frac{0.211 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1000 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{solm}} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.00422 \mathrm{~mol} \mathrm{CaCO}_{3}
$$

Since the starting amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution produces the smaller amount of $\mathrm{CaCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ is the limiting reactant and the maximum yield is $0.00422 \mathrm{~mol} \mathrm{CaCO}_{3}$.

Acid-Base Neutralizations

1. If 33.3 mL of 0.150 M HCl are needed to neutralize 0.0250 L of a NaOH solution, what is the molarity of the NaOH ?

Answer: $\quad 0.200 \mathrm{M}$

Solution

What we know: $\quad \mathrm{mol} \mathrm{HCl} / 1000 \mathrm{~mL}$ solution; mL HCl solution; mL NaOH solution
Desired answer: $\quad \mathrm{mol} \mathrm{NaOH} / \mathrm{L}$ solution

A balanced equation for the neutralization reaction is needed.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

The solution map for this calculation is:

$$
\mathrm{mL} \mathrm{HCl} \text { soln } \rightarrow \mathrm{mol} \mathrm{HCl} \rightarrow \mathrm{~mol} \mathrm{NaOH} \rightarrow \frac{\mathrm{~mol} \mathrm{NaOH}}{\text { L soln }}
$$

The conversion factor needed in the first step is the HCl solution concentration in the form $\frac{0.0984 \mathrm{~mol} \mathrm{KOH}}{1000 \mathrm{~mL} \text { soln }}$.

The conversion factor needed in the second step is the $\mathrm{NaOH} / \mathrm{HCl}$ mole ratio from the balanced equation.

Putting these together yields:
33.3 mL HClsoln $\mathrm{x} \frac{0.150 \mathrm{molHCl}}{1000 \mathrm{mLHClsoln}} \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{molHCl}}=0.00500 \mathrm{~mol} \mathrm{NaOH}$

The final step is:
$\frac{0.00500 \mathrm{~mol} \mathrm{NaOH}}{0.0250 \mathrm{~L} \mathrm{soln}}=\frac{0.200 \mathrm{~mol} \mathrm{NaOH}}{\text { L soln }}$
2. How many milliliters of 0.150 M HCl are needed to completely react $0.245 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$?

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Answer: $\quad 30.8 \mathrm{~mL}$

Solution

What we know: $\quad \mathrm{mol} \mathrm{HCl} / 1000 \mathrm{~mL}$ solution; $\mathrm{g}_{\mathrm{Na}}^{2} \mathrm{CO}_{3}$; balanced equation relating HCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Desired answer: mL HCl solution
The solution map for this calculation is:

$$
\mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \text { mol HCl } \rightarrow \text { mL HCl soln }
$$

S.6.17 CHAPTER 6 SOLUTIONS TO SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

The conversion factor needed in the first step is the molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the form
$\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}$.
The conversion factor needed in the second step is the $\mathrm{HCl} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ mole ratio from the balanced equation.

The conversion factor needed in the last step is the HCl solution concentration in the form $\frac{1000 \mathrm{~mL} \mathrm{soln}}{0.150 \mathrm{~mol} \mathrm{HCl}}$.

Putting these together yields:
$0.245 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{Sa}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{molHCl}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{1000 \mathrm{~mL} \mathrm{HCl} \text { soln }}{0.150 \mathrm{molHCl}}=30.8 \mathrm{~mL} \mathrm{HCl}$ soln

