Chapter 5

Supplementary Check for Understanding Problems

Moles and Molar Mass

1. Indicate the appropriate quantity for each of the following.
a) A mole of N atoms contains \qquad atoms.
b) A mole of N_{2} molecules contains \qquad molecules.
c) A mole of N_{2} molecules contains \qquad atoms.
d) A mole of N atoms has a mass of \qquad grams.
e) A mole of N_{2} molecules has a mass of \qquad grams.
2. a) What is the mass of 725 sodium atoms in atomic mass units?
b) What is the mass of 725 sodium atoms in grams?
3. How many atoms of an element are present in a sample of that element if the sample has a mass in grams equal to the atomic mass of the element?
4. Blackboard chalk is mostly calcium sulfate. How would you determine how many moles of calcium sulfate it takes to write your name in chalk on a blackboard?
5. What mass of zinc metal contains the same number of atoms as 16.1 grams of silver?
6. One atom of an element is found to weigh $2.107 \times 10^{-22} \mathrm{~g}$. What is the atomic weight of this element?
7. Which has the larger mass, 1.0 mmol of calcium or 1.5 mmol of sulfur? Justify your choice.
8. Which has the larger number of atoms, $0.045 \mu \mathrm{~g}$ of nickel or $0.032 \mu \mathrm{~g}$ of potassium? Justify your choice.
9. Calculate the molar mass for each of the following compounds.
a) potassium hydrogen phosphate
b) $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
10. Calculate the number of moles of compound in each of the following samples.
a) $2.239 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) 63.1 ng sulfur trioxide
c) $1.48 \times 10^{2} \mathrm{~kg}$ potassium permanganate

S. 2 CHAPTER 5 SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

11. How many CO molecules are present in 18.4 metric tons of carbon monoxide? One metric tons equals 1000 kg .
12. Calculate the mass in grams of each of the following samples.
a) 9.44 mol copper(II) sulfate
b) $7.11 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{CO}_{3}$
13. Calculate the moles of sulfur atoms in each of the following samples.
a) 4.63 g sodium thiosulfate
b) $5.81 \mu \mathrm{~g} \mathrm{Na}{ }_{2} \mathrm{~S}$
14. Calculate the number of carbon atoms in a 3.92-g sample of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$.
15. How many moles of oxygen atoms are present in 4.40 mmol calcium phosphate?

Mass Percent

1. Calculate the mass percent of each element in the following compounds.
a) barium chloride
b) sodium sulfate
2. Which of the following compounds contains the largest mass percent of nitrogen? Justify your choice.
a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b) HNO_{3}
c) $\mathrm{N}_{2} \mathrm{O}_{4}$
d) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
3. In a particular molecular compound the mass percent sulfur is 50% and the mass percent oxygen is 50%. What is the ratio of oxygen atoms to sulfur atoms in a molecule of this compound?
4. If a type of stainless steel contains 18% chromium by mass, how many moles of chromium are present in a bar of this material weighing 1.5 kg ?

S. 3 CHAPTER 5 SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

Stoichiometric Calculations (mole-to-mole)

1. Balance the following equation and state the meaning of the equation in terms of individual units of reactants and products and in terms of moles of reactants and products.

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mn}(\mathrm{~s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

2. How many moles of CO_{2} are needed to react completely with 0.675 mol LiOH ?

$$
\mathrm{LiOH}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (unbalanced) }
$$

3. Given the reaction

$$
4 \mathrm{FeS}(\mathrm{~s})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+4 \mathrm{SO}_{2}(\mathrm{~g})
$$

how many moles of O_{2} are needed to:
a) produce $0.693 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$?
b) react completely with 9.14 mol FeS ?
c) form $1.51 \mathrm{~mol} \mathrm{SO}_{2}$?

Stoichiometric Calculations (mole-to-mass \& mass-to-mole)

1. How many moles of each product can be formed from the decomposition of 1.00 g of the rocket fuel hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$?

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

2. How many moles of oxygen gas are needed for the complete combustion of $19.6 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$?
3. How many kilograms of $\mathrm{Li}_{2} \mathrm{O}$ are needed to react completely $4.17 \times 10^{3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{Li}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{LiOH}(\mathrm{~s})
$$

4. Carbon dioxide is produced in the reaction
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ (unbalanced)
How many grams of MgCO_{3} are needed to produce 14.8 moles of CO_{2} ?

S. 4 CHAPTER 5 SUPPLEMENTARY CHECK FOR UNDERSTANDING PROBLEMS

Stoichiometric Calculations (mass-to-mass)

1. How many grams of sulfur can react with 1.79 g of copper according to the following equation?

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{CuS}(\mathrm{~s})
$$

2. How many grams of chlorine are required to react completely with 0.455 g iron to form iron(III) chloride?
3. How many grams of each product can be formed from the decomposition of 14.0 g of sodium chlorate?

$$
2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

4. How many grams of potassium are needed to produce $16.5 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}$?

$$
\mathrm{KNO}_{3}(\mathrm{~s})+\mathrm{K}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \quad \text { (unbalanced) }
$$

Theoretical Yield and Limiting Reactant

1. Which is the limiting reactant when 0.68 g magnesium reacts with 17 mmol nitrogen gas to form $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?
2. How many moles of AsF_{5} can be produced when 14 moles of arsenic react with 29 mol fluorine gas?
3. When 26.5 g CO and $3.9 \mathrm{~g} \mathrm{H}_{2}$ are allowed to react as shown below,

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})
$$

a) which is the limiting reactant?
b) what is the theoretical yield in grams of $\mathrm{CH}_{3} \mathrm{OH}$?
c) how much of the reactant in excess remains?
4. How many grams of the excess reactant remain when a mixture of 2.50 kg of SiO 2 and 2.5 kg of carbon react?

$$
\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})
$$

