Chemistry 334

Final Examination

December 13, 1995

Professor Charonnat

Name: _____________________________

Be certain that your examination has nine (9) pages including this one.

Put your name on each page of this examination booklet.

By putting your name on this examination booklet you agree to abide by California State University, Northridge policies of academic honesty and integrity.
1. (25 points)

For each of the following five (5) questions draw the expected major organic product. If relevant, **clearly** specify the relative and/or absolute stereochemistry of the product.

A.

B.

C.

D.

E.
2. (25 points)

For each of the following five (5) questions denote the reagent or reagents necessary to effect the transformation shown.

A.

\[
\begin{array}{c}
\text{H}_3\text{C} - \ \text{C} = \text{C} - \text{H} \\
\text{CH}_3
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{H}_3\text{C} - \ \text{C} = \text{C} - \text{CH}_3 \\
\text{CH}_3
\end{array}
\]

B.

\[
\begin{array}{c}
\text{H}_2\text{C} - \text{C} = \text{C} - \text{CH}_2 \\
\text{CH}_3
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{H}_3\text{C} - \text{C}_3\text{H}_7
\end{array}
\]

\text{(racemic)}

C.

\[
\begin{array}{c}
\text{CH}_3\text{C} - \text{C} = \text{CH} - \text{H} \\
\text{H}_3\text{C}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{H}_3\text{C} - \text{C} = \text{CH}_2 - \text{CH}_2 - \text{N} - \text{H} \\
\text{CH}_3
\end{array}
\]

D.

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{C} = \text{H} \\
\text{H}_3\text{C}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH} = \text{CH}_3
\end{array}
\]

E.

\[
\begin{array}{c}
\text{CHO} \\
\text{HO} \\
\text{OH} \\
\text{OH} \\
\text{CH}_2\text{OH}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{HO} \\
\text{OH} \\
\text{OH} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{CH}_3
\end{array}
\]

\text{(mixture of } \alpha\text{- and } \beta\text{- anomers)}
3. (25 points)

Design a synthesis of the zwitterionic tripeptide I from the BOC-protected α-amino acids shown. Use any inorganic and organic reagents that you deem necessary. Draw clearly all reagents and isolable synthetic intermediate compounds. (N.B. Do not draw mechanisms for each synthetic transformation!)

\[
\text{H}_3\text{N}^+ \quad \text{CH}_3 \quad \text{II} \quad \text{H}_3\text{C} \quad \text{CH}_3 \quad \text{CO}_2\text{H} \quad \text{from BOCNH} \quad \text{CO}_2\text{H} \quad \text{BOC NH} \quad \text{CO}_2\text{H} \quad \text{and BOC NH} \quad \text{CO}_2\text{H}
\]

4. (25 points)

Use IUPAC rules to give the systematic names of the following two (2) compounds.

A.

\[
\text{H}_3\text{C} \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{CO} \quad \text{H}
\]

B.

\[
\text{H}_3\text{C} \quad \text{CH}_3 \quad \text{NH}_2 \quad \text{CH}_3
\]
5. (25 points)

Draw the mechanism of the following transformation, using the curved-arrow notation to indicate the reorganization of electron density. Show all intermediates and denote all lone pairs, formal charges and countercharges.

![Chemical reaction diagram]

6. (25 points)

Draw the mechanism of the following transformation, using the curved-arrow notation to indicate the reorganization of electron density. Show all intermediates and denote all lone pairs, formal charges and countercharges.

![Chemical reaction diagram]
7. (25 points)

Draw a specific example of:

A. any naturally-occurring saturated fatty acid:

B. any naturally-occurring unsaturated fatty acid:

C. any naturally-occurring wax:

D. any naturally-occurring triacylglycerol:

E. any detergent:

F. any prostaglandin:

G. any monoterpenes:

H. any sesquiterpenes:

I. any steroid:

J. any naturally-occurring neutral \(\alpha \)-amino acid:

K. any naturally-occurring essential \(\alpha \)-amino acid:

L. any naturally-occurring nonessential \(\alpha \)-amino acid:
8. (25 points)

The infrared, 1H NMR and 13C NMR (broadband 1H decoupled) spectra of compound A ($C_9H_{21}N$) are shown below. Clearly assign all the resonances that you can identify with certainty and draw the structure of compound A. (Correlation tables are included separately.)

The infrared spectrum is unavailable due to copyright considerations.
8. (cont.)

The 1H NMR and 13C NMR spectra are unavailable due to copyright considerations.
8. (cont.)

Infrared absorption assignments:

<table>
<thead>
<tr>
<th>wave number (cm(^{-1}))</th>
<th>functional group</th>
<th>type of vibration (stretch or bend)</th>
</tr>
</thead>
</table>

\(^1\)H NMR assignments:

<table>
<thead>
<tr>
<th>chemical shift (ppm)</th>
<th>assignment</th>
<th>explanation of multiplicity</th>
</tr>
</thead>
</table>

\(^{13}\)C NMR assignments:

<table>
<thead>
<tr>
<th>chemical shift (ppm)</th>
<th>assignment</th>
<th>explanation of multiplicity</th>
</tr>
</thead>
</table>

structure of compound A:

Congratulations!

<table>
<thead>
<tr>
<th></th>
<th>/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>/200</td>
</tr>
</tbody>
</table>