Chemistry 235

Comparison and Contrast of $S_N\mathbf{1}$ and $S_N\mathbf{2}$ Reactions

	<u>S</u> N1	<u>S</u> N2
1. kinetic order	first order	second order
2. stereochemistry	partial racemization	100% inversion
3. transition state(s)?	yes	yes
4. intermediates?	yes	no
5. carbocation intermediates?	yes	no
6. rearrangements (1,2-shifts)	possible	none
7. substrate effects		
relative reactivity vs. substitution	3° R-L > 2° R-L > 1° R-L > Me-L	Me-L > 1° R-L > 2° R-L > 3° R-L
better leaving group	increased reaction rate	increased reaction rate
8. nucleophile		
more nucleophilic reagent	no effect	increased reaction rate
increased [nucleophile]	no effect	increased reaction rate
9. solvent		
polar, protic	faster reaction rate	slower reaction rate
polar, aprotic	slower reaction rate	faster reaction rate