Solutions for Gravimetric Analysis Exercises

- The terms in a reaction quotient are actually dimensionless ratios of actual concentrations (or pressures) divided by standard concentrations (or pressures). The standard state for solutes is a 1 M solution and for gases it is a pressure of 1 bar (~ 1 atm), so these are the units used. For liquids and solids the standard state is the pure substance, so these ratios are unity. The solvent in a dilute solution is approximated as a pure substance.
- 2. The equilibrium constant for a reaction is dimensionless because it equals the reaction quotient at equilibrium, and, as discussed in Problem 1, this ratio involves only dimensionless terms.
- 3. a) Adding the two equations together gives

(3)	AgCl(s) ⇔ AgCl(aq)	$K_3 = K_1 \cdot K_2 = 3.6 \text{ x } 10$	
(2)	Ag[∗](aq) + Cl⁼(aq) ⇔ AgCl(aq)	$K_2 = 2.0 \times 10^3$	
(1)	AgCl(s) ⇔ Ag[*](aq) + Cl⁻(aq)	$K_1 = 1.8 \times 10^{-10}$	

- b) At equilibrium $K_3 = [AgCl(aq)]$, so $[AgCl(aq)] = 3.6 \times 10^{-7} M$.
- 4. Determine the solubility of $La(IO_3)_3$ using K_{sp} for $La(IO_3)_3$ and a table of initial and equilibrium concentration terms.

	$La(IO_3)_3(s)$	⇆	La ³⁺ (aq)	+	3lO ₃ -(aq)
init			0		0.050
equil			x		0.050 + 3x

where x equals the increase in the $[La^{3+}]$ as a result of the dissolving process.

at equil,
$$K_{sp} = 1.0 \times 10^{-11} = [La^{3+}][IO_3^{-1}]^3 = (x)(0.050 + 3x)^3 \approx (x)(0.050)^3$$

assumes $3x << 0.050$

$$[La^{3+}] = \frac{1.0 \times 10^{-11}}{(0.050)^3} = 8.0 \times 10^{-8} M$$
 (assumption valid)

Solutions for Gravimetric Analysis Exercises

- 5. MgCO₃ should be more soluble because it has the larger K_{sp} and the stoichiometry of the two salts is the same. If the stoichiometry of the salts is different, one cannot simply compare values of K_{sp} .
- 6. If only 1% of 0.010 M Ce³⁺ remains in solution this means $[Ce^{3+}] = 0.00010$ M. The concentration of oxalate in equilibrium with 0.00010 M Ce³⁺ is determined by

$$K_{sp} = 3 \times 10^{-29} = [Ce^{3+}]^2 [C_2O_4^{-2-}]^3 = (0.00010)^2 [C_2O_4^{-2-}]^3$$

$$[C_2 O_4^{2^-}] = \left(\frac{3 \times 10^{-29}}{(0.00010)^2}\right)^{1/3} = 1.4 \times 10^{-7}$$

To see if this oxalate concentration will precipitate 0.010 M Ca²⁺, calculate Q for the dissolution of CaC₂O₄ and compare to K_{sp} .

$$Q = [Ca^{2+}][C_2O_4^{2-}] = (0.010)(1.4 \times 10^{-7}) = 14. \times 10^{-9}$$

Since $Q < K_{sp}$ (=1.3 x 10⁻⁸) for CaC₂O₄, Ca²⁺ will not precipitate.

- 7. A high relative supersaturation results in a precipitate with very small particle size and one that is more difficult to recover quantitatively.
- 8. To lower the relative supersaturation,
 - precipitate from dilute solution
 - add precipitating agent slowly, with stirring
 - precipitate from hot solutions
 - adjust solvent to increase the precipitate solubility
- 9. An electrolyte in the wash solution preserves the electric double layer and prevents peptization (break up of the precipitate).
- 10. HNO₃ will volatilize during the drying process, NaNO₃ will not.

Solutions for Gravimetric Analysis Exercises

11.

Salt	At equilibrium	[Ag ⁺] at equilibrium for 0.10 M anion
AgCl	K _{sp} = 1.8 x 10 ⁻¹⁰ = [Ag ⁺][Cl ⁻]	1.8 x 10 ⁻⁹ M
AgBr	K _{sp} = 5.0 x 10 ⁻¹³ = [Ag ⁺][Br ⁻]	5.0 x 10 ⁻¹² M
Agl	$K_{sp} = 8.3 \times 10^{-17} = [Ag^+][I^-]$	8.3 x 10 ⁻¹⁶ M
Ag ₂ CrO ₄	$K_{sp} = 1.2 \times 10^{-12} = [Ag^+]^2 [CrO_4^{-2}]$	3.5 x 10⁻ ⁶ M

Precipitation occurs when $Q > K_{sp}$. If the mole ratio of Ag⁺ to the anion is the same, then the anions precipitate in order of increasing K_{sp} . Since this is not the case, the salt that needs the smallest [Ag⁺] to reach $Q > K_{sp}$ will precipitate first, followed by the others in order of increasing [Ag⁺]. Based on the information in the above table, I⁻ will precipitate first followed by Br⁻, then Cl⁻ and finally CrO₄²⁻.

12.

 $\frac{0.264 \text{ g } \text{Fe}_2\text{O}_3}{2.998 \text{ g } \text{powder}} \times \frac{1 \text{ mol } \text{Fe}_2\text{O}_3}{159.69 \text{ g } \text{Fe}_2\text{O}_3} \times \frac{2 \text{ mol } \text{Fe}\text{SO}_4 \cdot 7H_2\text{O}}{1 \text{ mol } \text{Fe}_2\text{O}_3} \times \frac{278.01 \text{ g } \text{Fe}\text{SO}_4 \cdot 7H_2\text{O}}{1 \text{ mol } \text{Fe}\text{SO}_4 \cdot 7H_2\text{O}} \times \frac{22.131 \text{ g } \text{powder}}{20.0 \text{ tablets}} = \frac{0.339 \text{ g } \text{Fe}\text{SO}_4 \cdot 7H_2\text{O}}{\text{tablet}}$

13. Let x = grams of K_2SO_4 and y = grams of $(NH_4)_2SO_4$. Thus, x + y = 0.649 g.

Since there is one mole of SO₄²⁻ in each mole of reactant and product,

$$\frac{x g K_2 SO_4}{174.27 g K_2 SO_4} + \frac{y g (NH_4)_2 SO_4}{132.14 g (NH_4)_2 SO_4} = \frac{0.977 g BaSO_4}{233.39 g BaSO_4}$$

$$\frac{174.27 g K_2 SO_4}{mol K_2 SO_4} + \frac{y g (NH_4)_2 SO_4}{mol (NH_4)_2 SO_4} = \frac{0.977 g BaSO_4}{mol BaSO_4}$$

Substituting y = 0.649 - x into the above equation and solving for x yields x = 0.397 g. Therefore,

mass %
$$K_2 SO_4 = \frac{0.397 \, g \, K_2 SO_4}{0.649 \, g \, sample} \times 100 = 61.2\%$$