Exercises for Volumetric Analysis

- 1. What is the difference between an end point and the equivalence point in a titration?
- 2. What is a primary standard?
- 3. What is the difference between a direct titration and a back titration?
- 4. What effect will the deionized water used to deliver a partial drop from a buret tip have on the end point volume of a titration?
- 5. A 0.3147-g sample of primary standard grade $Na_2C_2O_4$ was dissolved in dilute H_2SO_4 and titrated with a solution of KMnO₄. The end point was observed after addition of of 31.67 mL of the titrant.

 $5C_2O_4^{2-}$ + $2MnO_4^{-}$ + $16H^+ \rightarrow 2Mn^{2+}$ + $10CO_2$ + $8H_2O$

a) Calculate the molarity of the $KMnO_4$ solution.

The iron in a 0.6656-g ore sample in acidic solution was then reduced quantitatively to Fe^{2+} and titrated with 26.75 mL of the standard KMnO₄ titrant solution.

 $5Fe^{2+}$ + MnO_4^- + $8H^+ \rightarrow Mn^{2+}$ + $5Fe^{3+}$ + $4H_2O$

b) Calculate the mass percent Fe_2O_3 in the sample.

Exercises for Volumetric Analysis

A cyanide solution with a volume of 12.73 mL was treated with 25.00 mL of Ni²⁺ solution (containing excess Ni²⁺) to convert the cyanide into tetracyanonickelate(II).

 $4CN^{-} + Ni^{2+} \rightarrow Ni(CN)_{4}^{2-}$

The excess Ni^{2+} was then titrated with 10.15 mL of 0.01307 M ethylenediaminetetraacetic acid (EDTA).

 Ni^{2+} + EDTA⁴⁻ \rightarrow Ni(EDTA)²⁻

The Ni(CN)₄²⁻ does not react with the EDTA. If 39.35 mL of the EDTA solution were required to react with 30.10 mL of the original Ni²⁺ solution, what is the molarity of CN⁻ in the 12.73-mL cyanide solution?

Solutions for Volumetric Analysis Exercises