Chapter 5

Solutions to Supplementary Check for Understanding Problems

Moles and Molar Mass

1. Indicate the appropriate quantity for each of the following.
a) A mole of N atoms contains \qquad atoms.
b) A mole of N_{2} molecules contains \qquad molecules.
c) A mole of N_{2} molecules contains \qquad atoms.
d) A mole of N atoms has a mass of \qquad grams.
e) A mole of N_{2} molecules has a mass of \qquad grams.

Answers: a) 6.022×10^{23} atoms
b) 6.022×10^{23} molecules
c) 1.2044×10^{24} atoms
d) 14.01 g
e) 28.02 g

Solutions

a) A mole of anything always contains 6.022×10^{23} items of that material.
b) A mole of anything always contains 6.022×10^{23} items of that material.
c) Since a mole of N_{2} molecules contains 6.022×10^{23} molecules of N_{2} and there are 2 atoms of N per molecule of N_{2}, the total number of N atoms is given by:

$$
\frac{6.022 \times 10^{23} \mathrm{~N}_{2} \text { molecules }}{\mathrm{mol} \mathrm{~N}_{2}} \times \frac{2 \text { atoms } \mathrm{N}}{1 \text { molecule } \mathrm{N}_{2}}=\frac{1.204410^{24} \text { atoms } \mathrm{N}}{\mathrm{~mol} \mathrm{~N}_{2}}
$$

d) The mass in grams of a mole of atoms of any element (its molar mass) is numerically equally to the weighted average atomic mass in atomic mass units. Since the atomic weight of nitrogen is 14.01 , its weighted atomic mass is 14.01 u and a mole of nitrogen atoms weighs 14.01 g .
e) The mass in grams of a mole of N_{2} molecules (its molar mass) is obtained by summing the molar masses of the atoms in the chemical formula. Since the molar mass of N is $14.01 \mathrm{~g} / \mathrm{mol}$ (see part d), the molar mass of N_{2} is:

$$
\frac{14.01 \mathrm{~g}}{\mathrm{molN}} \times \frac{2 \mathrm{molN}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=\frac{28.01 \mathrm{~g}}{\mathrm{~mol} \mathrm{~N}_{2}}
$$

2. a) What is the mass of 725 sodium atoms in atomic mass units?

Answer: $\quad 1.67 \times 10^{3} \mathrm{u}$

Solution

The numerical value of the atomic weight of sodium (22.99) refers to the mass of a single sodium atom in atomic mass units. Applying this yields:

725 Natoms $x \frac{22.99 \mathrm{u}}{\text { Natom }}=1.67 \times 10^{3} \mathrm{u}$
b) What is the mass of 725 sodium atoms in grams?

Answer: $\quad 2.77 \times 10^{-20} \mathrm{~g}$

Solution

What we know: number of Na atoms
Desired answer: $\quad \mathrm{g} \mathrm{Na}$
The solution map for this calculation is:

$$
\text { atom } \mathrm{Na} \rightarrow \mathrm{molNa} \rightarrow \mathrm{~g} \mathrm{Na}
$$

The conversion factor needed in the first step is the Avogadro constant expressed in the form $\frac{1 \mathrm{~mol} \mathrm{Na}}{6.022 \times 10^{23} \mathrm{Na} \text { atoms }}$.

The conversion factor needed in the second step is the molar mass of sodium. The numerical value for the molar mass is obtained from the atomic weight of sodium (22.99) and is expressed in the form $\frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}$.

Putting these together yields:
725 atoms $\mathrm{Na} \times \frac{1 \mathrm{molNa}}{6.022 \times 10^{23} \text { atoms } \mathrm{Na}} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{molNa}}=2.77 \times 10^{-20} \mathrm{~g} \mathrm{Na}$
3. How many atoms of an element are present in a sample of that element if the sample has a mass in grams numerically equal to the atomic weight of the element?

Answer: $\quad 6.022 \times 10^{23}$ atoms

Solution

A mass in grams numerically equal to the atomic weight of an element is its molar mass and thus contains one mole of atoms of that element. Therefore, this sample will contain 6.022×10^{23} atoms.
4. Blackboard chalk is mostly calcium sulfate. How would you determine how many moles of calcium sulfate it takes to write your name in chalk on a blackboard?

Solution

The moles of a pure substance can be determined from the mass of the substance and its molar mass. The mass of the chalk used can be obtained by weighing the chalk before and after writing your name and calculating the difference between the masses. The molar mass of calcium sulfate can be obtained from its chemical formula $\left(\mathrm{CaSO}_{4}\right)$. The calculations will be:
g CaSO 4 used $=$ initial mass of chalk - final mass of chalk

$$
\mathrm{gCaSO}_{4} \text { used x } \frac{1 \mathrm{molCaSO}_{4}}{136.15 \mathrm{ECaSO}_{4}}=\mathrm{molCaSO}_{4} \text { used }
$$

5. What mass of zinc metal contains the same number of atoms as 16.1 grams of silver?

Answer: $\quad 9.76$ g

Solution

What we know: $\quad \mathrm{g} \mathrm{Ag}$; number of Ag atoms equals number of Zn atoms
Desired answer: $\quad \mathrm{g} \mathrm{Zn}$

The solution map for this calculation is:

$$
\mathrm{g} \mathrm{Ag} \rightarrow \mathrm{~mol} \mathrm{Ag} \rightarrow \mathrm{~mol} \mathrm{Zn} \rightarrow \mathrm{~g} \mathrm{Zn}
$$

The conversion factor needed in the first step is the molar mass of Ag in the form $\frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{~g} \mathrm{Ag}}$.
The problem indicates that the number of atoms of Zn is the same as the number of atoms of Ag . Therefore, $\mathrm{mol} \mathrm{Zn}=\mathrm{mol} \mathrm{Ag}$. This relationship can be applied as the conversion factor in the second step in the form $\frac{1 \mathrm{~mol} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Ag}}$.

The conversion factor needed in the last step is the molar mass of Zn expressed in the form $\frac{65.39 \mathrm{~g} \mathrm{Zn}}{\mathrm{mol} \mathrm{Zn}}$.

Putting these together yields:
$16.1 \mathrm{~g} \mathrm{gg} \times \frac{1 \mathrm{~mol} \Lambda \mathrm{~g}}{107.9 \mathrm{~g} \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{1 \mathrm{~mol} \Lambda \mathrm{~g}} \times \frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{molZn}}=9.76 \mathrm{~g} \mathrm{Zn}$
6. One atom of an element is found to weigh $2.107 \times 10^{-22} \mathrm{~g}$. What is the atomic weight of this element?

Answer: 126.9
Solution
What we know: g/atom
Desired answer: atomic weight of element
We know that the atomic weight of this element is numerically equal to the molar mass of this element. The solution map for calculating the molar mass is:

$$
\frac{\mathrm{g}}{\text { atom }} \rightarrow \frac{\mathrm{g}}{\mathrm{~mol}}
$$

The conversion factor needed is the Avogadro constant expressed in the form

$$
\frac{6.022 \times 10^{23} \text { atoms }}{\mathrm{mol}}
$$

Applying this yields:
$\frac{2.107 \times 10^{-22} \mathrm{~g}}{\mathrm{~mol}} \times \frac{6.022 \times 10^{23}}{\mathrm{moms}}=\frac{126.9 \mathrm{~g}}{\mathrm{~mol}}$
Since the molar mass of this element is $126.9 \mathrm{~g} / \mathrm{mol}$, then the atomic weight of the element is 126.9.
7. Which has the larger mass, 1.0 mmol of calcium or 1.5 mmol of sulfur? Justify your choice.

Answer: $\quad 1.5 \mathrm{mmol}$ sulfur

Solution

The most direct way to make this determination is to calculate the mass of each and compare. The general solution map for this calculation is:

$$
\text { mmol element } \rightarrow \text { mol element } \rightarrow \text { g element }
$$

The conversion factor needed in the first step is that between mmol and mol in the form
$\frac{10^{-3} \mathrm{~mol}}{1 \mathrm{mmol}}$.
The conversion factor needed in the second step is the molar mass of the element expressed in the form $\frac{\mathrm{g}}{\mathrm{mol}}$.

Applying these yields:
$1.0 \mathrm{mmolCa} \times \frac{10^{-3} \mathrm{molCa}}{1 \mathrm{mmolCa}} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{\mathrm{molCa}}=0.040 \mathrm{~g} \mathrm{Ca}$
1.5 mmols $\times \frac{10^{-3} \mathrm{mols}}{1 \mathrm{mmols}} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{\text { mols }}=0.048 \mathrm{~g} \mathrm{~S} \quad \leftarrow$ larger mass
8. Which has the larger number of atoms, $0.045 \mu \mathrm{~g}$ of nickel or $0.032 \mu \mathrm{~g}$ of potassium? Justify your choice.

Answer: $\quad 0.032 \mu \mathrm{~g}$ potassium

Solution

The most direct way to make this determination is to calculate the moles of each and compare. The general solution map for this calculation is:

$$
\mu \mathrm{g} \text { element } \rightarrow \mathrm{g} \text { element } \rightarrow \text { mol element }
$$

The conversion factor needed in the first step is that between $\mu \mathrm{g}$ and g in the form $\frac{10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}}$.
The conversion factor needed in the second step is the molar mass of the element expressed in the form $\frac{\mathrm{mol}}{\mathrm{g}}$.

Applying these yields:
$0.045 \mu \mathrm{NNi} \times \frac{10^{-6} \mathrm{~g} \mathrm{Ni}}{1 \mu \mathrm{Ni}} \times \frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}}=7.7 \times 10^{-10} \mathrm{~mol} \mathrm{Ni}$
$0.032 \mu \mathrm{gK} \times \frac{10^{-6} \mathrm{gK}}{1 \mu \mathrm{gK}} \times \frac{1 \mathrm{molK}}{39.10 \mathrm{gK}}=8.2 \times 10^{-10} \mathrm{molK} \quad \leftarrow$ larger mol
9. Calculate the molar mass for each of the following compounds.
a) potassium hydrogen phosphate
b) $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

Answers: a) $174.18 \mathrm{~g} / \mathrm{mol}$
b) $325.29 \mathrm{~g} / \mathrm{mol}$

Solutions

a) What we know: potassium hydrogen phosphate; atomic weights of elements

Desired answer: g potassium hydrogen phosphate/mol

The chemical formula for potassium hydrogen phosphate is $\mathrm{K}_{2} \mathrm{HPO}_{4}$. The formula indicates that in 1 mole of potassium hydrogen phosphate there are 2 moles of potassium, 1 mole of hydrogen, 1 mole of phosphorus and 4 moles of oxygen. From the periodic table we see that 1 mole of potassium atoms weighs 39.10 g , 1 mole of hydrogen atoms weighs 1.008 g , 1 mole of phosphorus atoms weighs 30.97 g and 1 mole of oxygen atoms weighs 16.00 g . Thus, one mole of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ will weigh:
$2 \mathrm{~K} \quad 2$ molk $x \frac{39.10 \mathrm{~g}}{\mathrm{molK}}=78.20 \mathrm{~g}$
$1 \mathrm{H} \quad 1 \mathrm{molH} \times \frac{1.008 \mathrm{~g}}{\mathrm{molH}}=1.008 \mathrm{~g}$
$1 \mathrm{P} \quad 1$ molp $\times \frac{30.97 \mathrm{~g}}{\mathrm{molP}}=\quad 30.97 \mathrm{~g}$
$4 \mathrm{O} \quad 4 \mathrm{molO} \times \frac{16.00 \mathrm{~g}}{1 \mathrm{molO}}=64.00 \mathrm{~g}$

$$
174.18 \mathrm{~g}
$$

The molar mass of potassium hydrogen phosphate is $174.18 \mathrm{~g} / \mathrm{mol}$.
b) What we know: $\quad \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$; atomic weights of elements

Desired answer: $\quad \mathrm{g} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} / \mathrm{mol}$

The chemical formula indicates that in 1 mole of lead(II) acetate there are 1 mole of lead, 4 moles of carbon, 6 moles of hydrogen and 4 moles of oxygen. From the periodic table we see that 1 mole of lead atoms weighs $207.2 \mathrm{~g}, 1$ mole of carbon atoms weighs $12.01 \mathrm{~g}, 1$ mole of hydrogen atoms weighs 1.008 g and 1 mole of oxygen atoms weighs 16.00 g . Thus, one mole of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ will weigh:
$1 \mathrm{~Pb} \quad 1 \mathrm{molPb} \times \frac{207.2 \mathrm{~g}}{1 \mathrm{molPb}}=207.2 \mathrm{~g}$
$4 \mathrm{C} \quad 4$ molc $\times \frac{12.01 \mathrm{~g}}{1 \mathrm{molC}}=48.04 \mathrm{~g}$
$6 \mathrm{H} \quad 6 \mathrm{molH} \times \frac{1.008 \mathrm{~g}}{1 \mathrm{molH}}=\quad 6.048 \mathrm{~g}$
$4 \mathrm{O} \quad 4 \mathrm{molO} \times \frac{16.00 \mathrm{~g}}{1 \mathrm{molO}}=64.00 \mathrm{~g}$
325.29 g

The molar mass of lead(II) acetate is $325.29 \mathrm{~g} / \mathrm{mol}$.
10. Calculate the number of moles of compound in each of the following samples.
a) $2.239 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) 63.1 ng sulfur trioxide
c) $1.48 \times 10^{2} \mathrm{~kg}$ potassium permanganate

Answers: a) 0.04860 mol
b) $7.88 \times 10^{-10} \mathrm{~mol}$
c) $9.36 \times 10^{2} \mathrm{~mol}$

Solutions
a) What we know: $\mathrm{g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Desired answer: $\quad \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
The solution map for this calculation is

$$
\mathrm{g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

The conversion factor needed is the molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. From the periodic table we can get the molar masses of carbon, hydrogen and oxygen and add them as follows. $2(12.01 \mathrm{~g}) \mathrm{C}+$ $6(1.008 \mathrm{~g}) \mathrm{H}+16.00 \mathrm{~g} \mathrm{O}=46.07 \mathrm{~g}$. Thus the molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is $46.07 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{1 \mathrm{molC}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}$ to convert units properly. Applying this yields:

$$
2.239 \mathrm{gC}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{1 \mathrm{molC}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.07 \mathrm{EC}_{2} \mathrm{H}_{5} \mathrm{OH}}=0.04860 \mathrm{molC}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

b) What we know: ng sulfur trioxide

Desired answer: mol sulfur trioxide
The solution map for this calculation is

$$
\text { ng sulfur trioxide } \rightarrow \mathrm{g} \text { sulfur trioxide } \rightarrow \mathrm{mol} \text { sulfur trioxide }
$$

The formula for sulfur trioxide is SO_{3}. The conversion factor needed in the first step is that between $n g$ and g in the form $\frac{10^{-9} g}{1 \mathrm{ng}}$. The conversion factor needed in the second step is the molar mass of SO_{3}. From the periodic table we can get the molar masses of sulfur and oxygen and add them as follows. $32.07 \mathrm{~g} \mathrm{~S}+3(16.00 \mathrm{~g}) \mathrm{O}=80.07 \mathrm{~g}$. Thus the molar mass of SO_{3} is $80.07 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{1 \mathrm{molSO}_{3}}{80.07 \mathrm{~g} \mathrm{SO}_{3}}$ to convert units properly.

Putting these together yields:
$63.1 \mathrm{mgSO}_{3} \times \frac{10^{-9} \mathrm{~g} \mathrm{SO}_{3}}{1 \mathrm{qgSO}_{3}} \times \frac{1 \mathrm{molSO}_{3}}{80.07 \mathrm{gSO}_{3}}=7.88 \times 10^{-10} \mathrm{molSO}_{3}$
c) What we know: kg potassium permanganate

Desired answer: mol potassium permanganate
The solution map for this calculation is
kg potassium permanganate \rightarrow g potassium permanganate \rightarrow mol potassium permanganate

The formula for potassium permanganate is KMnO_{4}. The conversion factor needed in the first step is that between kg and g in the form $\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}$. The conversion factor needed in the second step is the molar mass of KMnO_{4}. From the periodic table we can get the molar masses of potassium, manganese and oxygen and add them as follows. $39.10 \mathrm{~g} \mathrm{~K}+54.94 \mathrm{~g} \mathrm{Mn}+$ $4(16.00 \mathrm{~g}) \mathrm{O}=158.04 \mathrm{~g}$. Thus the molar mass of KMnO_{4} is $158.04 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{1 \mathrm{~mol}_{\mathrm{KMnO}}^{4}}{}$ $158.04 \mathrm{~g} \mathrm{KMnO}_{4} \quad$ to convert units properly.

Putting these together yields:

11. How many CO molecules are present in 18.4 metric tons of carbon monoxide? One metric tons equals 1000 kg .

Answer: $\quad 3.96 \times 10^{29}$ molecules

Solution

What we know: metric tons CO

Desired answer: number of molecules CO
The solution map for this calculation is

$$
\text { metric tons } \mathrm{CO} \rightarrow \mathrm{~kg} \mathrm{CO} \rightarrow \mathrm{~g} \mathrm{CO} \rightarrow \mathrm{~mol} \mathrm{CO} \rightarrow \text { molecules } \mathrm{CO}
$$

The conversion factor needed in the first step is that between metric tons and kg in the form $\frac{1000 \mathrm{~kg}}{1 \text { metricton }}$. The conversion factor needed in the second step is that between kg and g in the 1 metric ton
form $\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}$. The conversion factor needed in the third step is the molar mass of CO. From the periodic table we can get the molar masses of carbon and oxygen and add them as follows. $12.01 \mathrm{~g} \mathrm{C}+16.00 \mathrm{~g} \mathrm{O}=28.01 \mathrm{~g}$. Thus the molar mass of CO is $28.01 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{1 \mathrm{molCO}}{28.01 \mathrm{~g} \mathrm{CO}}$ to convert units properly.

The conversion factor needed in the last step is the Avogadro constant in the form $\frac{6.022 \times 10^{23} \text { molecules CO }}{\mathrm{molCO}}$.

Putting these together yields:
18.4 metric $\mathrm{CO} \times \frac{1000 \mathrm{~kg} \mathrm{CO}}{1 \text { metrictonCO}} \times \frac{10^{3} \mathrm{gCO}}{1 \mathrm{kgCO}} \times \frac{1 \mathrm{molCO}}{28.01 \mathrm{gCO}} \times \frac{6.022 \times 10^{23} \mathrm{molecules} \mathrm{CO}}{1 \mathrm{molCO}}=3.9610^{29}$ molecules CO
12. Calculate the mass in grams of each of the following samples.
a) 9.44 mol copper(II) sulfate
b) $7.11 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{CO}_{3}$

Answers: a) $1.51 \times 10^{3} \mathrm{~g}$
b) 0.427 g

Solutions

a) What we know: mol copper(II) sulfate

Desired answer: g copper(II) sulfate
The solution map for this calculation is
mol copper(II) sulfate $\rightarrow \mathrm{g}$ copper(II) sulfate
The formula for copper(II) sulfate is CuSO_{4}. The conversion factor needed is the molar mass of CuSO_{4}. From the periodic table we can get the molar masses of copper, sulfur and oxygen and add them as follows. $63.55 \mathrm{~g} \mathrm{Cu}+32.07 \mathrm{~g} \mathrm{~S}+4(16.00 \mathrm{~g}) \mathrm{O}=159.62 \mathrm{~g}$. Thus the molar mass of CuSO_{4} is $159.62 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{159.62 \mathrm{~g} \mathrm{CuSO}_{4}}{1 \mathrm{molCuSO}_{4}}$ to convert units properly.

Applying this yields:
$9.44 \mathrm{molCuSO}_{4} \times \frac{159.62 \mathrm{~g} \mathrm{CuSO}_{4}}{1 \mathrm{molCuSO}_{4}}=1.51 \times 10^{3} \mathrm{~g} \mathrm{CuSO}_{4}$
b) What we know: $\quad \mathrm{mmol}_{\mathrm{Li}}^{2} \mathrm{CO}_{3}$

Desired answer: $\quad \mathrm{g} \mathrm{Li}_{2} \mathrm{CO}_{3}$
The solution map for this calculation is

$$
\mathrm{mmol} \mathrm{Li} \mathrm{CO}_{3} \rightarrow \mathrm{~mol} \mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}
$$

The conversion factor needed in the first step is that between mmol and mol in the form $\frac{10^{-3} \mathrm{~mol}}{1 \mathrm{mmol}}$. The conversion factor needed in the second step is the molar mass of $\mathrm{Li}_{2} \mathrm{CO}_{3}$. From the periodic table we can get the molar masses of lithium, carbon and oxygen and add them as follows. $2(6.941) \mathrm{g} \mathrm{Li}+12.01 \mathrm{~g} \mathrm{C}+3(16.00 \mathrm{~g}) \mathrm{O}=60.01 \mathrm{~g}$. Thus the molar mass of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ is $60.01 \mathrm{~g} / \mathrm{mol}$. This is used in the form $\frac{60.01 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{CO}_{3}}$ to convert units properly.

Putting these together yields:
$7.11 \mathrm{mmolLi}_{2} \mathrm{CO}_{3} \times \frac{10^{-3} \mathrm{molLi}_{2} \mathrm{CO}_{3}}{1 \mathrm{molLi}_{2} \mathrm{CO}_{3}} \times \frac{60.01 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}}{1 \mathrm{molLi}_{2} \mathrm{CO}_{3}}=0.427 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}$
13. Calculate the moles of sulfur atoms in each of the following samples.
a) 4.63 g sodium thiosulfate
b) $5.81 \mu \mathrm{~g} \mathrm{Na}{ }_{2} \mathrm{~S}$

Answers: a) 0.0586 mol
b) $7.44 \times 10^{-8} \mathrm{~mol}$

Solutions
a) What we know: g sodium thiosulfate

Desired answer: mol sulfur atoms

The solution map for this calculation is:

$$
\mathrm{g} \text { sodium thiosulfate } \rightarrow \text { mol sodium thiosulfate } \rightarrow \mathrm{mol} \mathrm{~S}
$$

The formula for sodium thiosulfate is $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The conversion factor needed in the first step is the molar mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. From the periodic table we can get the molar masses of sodium, sulfur and oxygen and add them as follows. $2(22.99 \mathrm{~g}) \mathrm{Na}+2(32.07 \mathrm{~g}) \mathrm{S}+3(16.00 \mathrm{~g}) \mathrm{O}=$ 158.12 g . Thus the molar mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is $158.12 \mathrm{~g} / \mathrm{mol}$. This is needed in the form
$\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{158.12 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$.
The formula of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ indicates that in 1 mole of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ there are 2 moles of sulfur atoms. This relationship can be applied as the conversion factor in the second step in the form
$\frac{2 \mathrm{molS}}{1 \mathrm{molNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$.
Putting these together yields:

$$
4.63 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{158.12 \frac{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{1}} \times \frac{2 \mathrm{molS}}{1 \mathrm{molNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=0.0586 \mathrm{molS}
$$

b) What we know: $\quad \mu \mathrm{g} \mathrm{Na} 2_{2} \mathrm{~S}$

Desired answer: mol S atoms
The solution map for this calculation is:

$$
\mu \mathrm{g} \mathrm{Na} 2 \mathrm{~S} \rightarrow \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{molS}
$$

The conversion factor needed in the first step is that between $\mu \mathrm{g}$ and g in the form $\frac{10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}}$. The conversion factor needed in the second step is the molar mass of $\mathrm{Na}_{2} \mathrm{~S}$. From the periodic table we can get the molar masses of sodium and sulfur and add them as follows. $2(22.99 \mathrm{~g}) \mathrm{Na}+$ $32.07 \mathrm{~g} \mathrm{~S}=78.05 \mathrm{~g}$. Thus the molar mass of $\mathrm{Na}_{2} \mathrm{~S}$ is $78.05 \mathrm{~g} / \mathrm{mol}$. This is needed in the form $\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}{78.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}}$.

The formula of $\mathrm{Na}_{2} \mathrm{~S}$ indicates that in 1 mole of $\mathrm{Na}_{2} \mathrm{~S}$ there is 1 mole of sulfur atoms. This relationship can be applied as the conversion factor in the last step in the form

$$
\frac{1 \mathrm{molS}^{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}}{}
$$

Putting these together yields:

$$
5.81 \mu \mathrm{~g} \mathrm{Na} 2_{2} \mathrm{~S} \times \frac{10^{-6} \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}}{1 \mu \mathrm{~g} \mathrm{Na}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}{78.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}} \times \frac{1 \mathrm{molS}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}=7.44 \times 10^{-8} \mathrm{molS}
$$

14. Calculate the number of carbon atoms in a $3.92-\mathrm{g}$ sample of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$.

Answer: $\quad 9.64 \times 10^{22}$ atoms

Solution
What we know: $\quad \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
Desired answer: number of C atoms
The solution map for this calculation is:

$$
\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \rightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \rightarrow \mathrm{molC} \rightarrow \text { atoms C }
$$

The conversion factor needed in the first step is the molar mass of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$. From the periodic table we can get the molar masses of carbon, hydrogen and chlorine and add them as follows. $6(12.01 \mathrm{~g}) \mathrm{C}+4(1.008 \mathrm{~g}) \mathrm{H}+2(35.45 \mathrm{~g}) \mathrm{Cl}=146.99 \mathrm{~g}$. Thus the molar mass of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ is
$146.99 \mathrm{~g} / \mathrm{mol}$. This is needed in the form $\frac{1 \mathrm{molC}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}}{146.99 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}}$.
The formula of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ indicates that in 1 mole of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ there are 6 moles of carbon atoms. This relationship can be applied as the conversion factor in the second step in the form
$\frac{6 \mathrm{molC}}{1 \mathrm{molC}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}}$.

The conversion factor needed in the last step is the Avogadro constant in the form $\frac{6.022 \times 10^{23} \text { atoms C }}{1 \mathrm{molC}}$.

Putting these together yields:

$$
3.92 \mathrm{gC}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}}{146.99 \mathrm{gC}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}} \times \frac{6 \mathrm{molC}}{1 \mathrm{molC}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}} \times \frac{6.022 \times 10^{23} \text { atoms C}}{1 \mathrm{molC}}=9.64 \times 10^{22} \text { atoms C }
$$

15. How many moles of oxygen atoms are present in 4.40 mmol calcium phosphate?

Answer: $\quad 0.0352 \mathrm{~mol}$

Solution

What we know: mmol calcium phosphate
Desired answer: mol O
The solution map for this calculation is:

$$
\text { mmol calcium phosphate } \rightarrow \text { mol calcium phosphate } \rightarrow \text { mol O }
$$

The formula for calcium phosphate is $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. The conversion factor needed in the first step is that between mmol and mol in the form $\frac{10^{-3} \mathrm{~mol}}{1 \mathrm{mmol}}$.

The formula of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ indicates that in 1 mole of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ there are 8 moles of oxygen atoms. This relationship can be applied as the conversion factor in the second step in the form $\frac{8 \mathrm{molO}}{1 \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}$.

Putting these together yields:
$4.40 \mathrm{mmolCa}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{10^{-3} \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1 \mathrm{mmolCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \times \frac{8 \mathrm{molO}}{1 \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=0.0352 \mathrm{molO}$

Mass Percent

1. Calculate the mass percent of each element in the following compounds.
a) barium chloride
b) sodium sulfate

Answers: a) $65.95 \% \mathrm{Ba}$ and $34.05 \% \mathrm{Cl}$
b) $32.37 \% \mathrm{Na}, 22.58 \% \mathrm{~S}$ and $45.05 \% \mathrm{O}$

Solutions

a) What we know: barium chloride; atomic weights of elements

Desired answer: mass \% of each element present

The formula for barium chloride is BaCl_{2}. Since the mass percent values apply to any sample of BaCl_{2}, it is convenient to consider one mole of this compound. From the periodic table we can get the molar masses of barium and chlorine and add them as follows. $137.3 \mathrm{~g} \mathrm{Ba}+2(35.45 \mathrm{~g})$ $\mathrm{Cl}=208.2 \mathrm{~g}$. Thus the molar mass of BaCl_{2} is $208.2 \mathrm{~g} / \mathrm{mol}$, so 208.2 g represents the total mass of material. The formula indicates that 1 mole of BaCl_{2} contains 1 mole of barium. Therefore the mass of barium (=component mass) present is 137.3 g .

These values are used to obtain the mass percent for barium.

$$
\operatorname{mass} \% \mathrm{Ba}=\frac{137.3 \mathrm{~g} \mathrm{Ba}}{208.2 \mathrm{~g} \mathrm{BaCl}_{2}} \times 100=65.95 \%
$$

Since chlorine is the only other element present in the compound, the mass $\% \mathrm{Cl}=100.00 \%$ $65.95 \%=34.05 \%$.
b) What we know: sodium sulfate; atomic weights of elements

Desired answer: mass \% of each element present
The formula for sodium sulfate is $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Since the mass percent values apply to any sample of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, it is convenient to consider one mole of this compound. From the periodic table we can get the molar masses of sodium, sulfur and oxygen and add them as follows. $2(22.99 \mathrm{~g}) \mathrm{Na}+$ $32.07 \mathrm{~g} \mathrm{~S}+4(16.00 \mathrm{~g}) \mathrm{O}=142.05 \mathrm{~g}$. Thus the molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is $142.05 \mathrm{~g} / \mathrm{mol}$, so 142.05 g represents the total mass of material. The formula indicates that 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 2 moles of sodium. Therefore the mass of sodium (=component mass) present is $2(22.99 \mathrm{~g})=$ 45.98 g .

These values are used to obtain the mass percent for sodium.

$$
\operatorname{mass} \% \mathrm{Na}=\frac{45.98 \mathrm{~g} \mathrm{Na}}{142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times 100=32.37 \%
$$

The formula indicates that 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 1 mole of sulfur. Therefore the mass of sulfur (=component mass) present is 32.07 g .

These values are used to obtain the mass percent for sulfur.

$$
\operatorname{mass} \% \mathrm{~S}=\frac{32.07 \mathrm{~g} \mathrm{~S}}{142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times 100=22.58 \%
$$

Since oxygen is the only other element present in the compound, the mass $\% \mathrm{O}=100.00 \%$ $32.37 \%-22.58 \%=45.05 \%$.
2. Which of the following compounds contains the largest mass percent of nitrogen? Justify your choice.
a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b) HNO_{3}
c) $\mathrm{N}_{2} \mathrm{O}_{4}$
d) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$

Answer: $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$

Solution

The most direct way to answer this is to determine the mass percent N in each compound. This is calculated from the mass of one mole of a compound and the mass of nitrogen present in one mole of that compound. The required data are shown below.

Compound	Mass of one mole of compound	Mass of N in one mole of compound	Mass \% N
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	80.05 g	28.02 g	35.00%
HNO_{3}	63.02 g	14.01 g	22.23%
$\mathrm{~N}_{2} \mathrm{O}_{4}$	92.02	28.02 g	30.45%
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	213.01 g	42.03 g	19.72%

Thus, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ has the largest mass $\% \mathrm{~N}$.
3. In a particular molecular compound the mass percent sulfur is 50.0% and the mass percent oxygen is 50.0%. What is the ratio of oxygen atoms to sulfur atoms in a molecule of this compound?

Answer: $\quad 2 \mathrm{O}$ atoms $/ \mathrm{S}$ atom

Solution

What we know: mass \% of each element present; atomic weights of elements
Desired answer: number of O atoms $/ \mathrm{S}$ atom in compound
The ratio of O atoms to S atoms is the same as the ratio of mol O to mol S. In order to obtain the moles of each element, choose an arbitrary mass of the compound (100 g simplifies the math) and use the following solution map:

$$
\mathrm{g} \text { compound } \rightarrow \mathrm{g} \text { element } \rightarrow \text { mol element }
$$

The conversion factor for the first step is the mass percent of the element used in the form $\frac{\mathrm{g} \text { element }}{100 \mathrm{~g} \text { compound }}$. The conversion factor for the second step is the molar mass of the element in the form $\frac{\text { mol element }}{\text { g element }}$.

Applying these to each element yields:
100 geompound $\times \frac{50.0 \mathrm{~g} \theta}{100 \text { geompound }} \times \frac{1 \mathrm{molO}}{16.00 \mathrm{~g} \theta}=3.12 \mathrm{molO}$

100 compound $\times \frac{50.0 \mathrm{gS}}{100 \text { eompound }} \times \frac{1 \mathrm{molS}}{32.07 \mathrm{gS}}=1.56 \mathrm{molS}$
The mole ratio of O to S is $3.12 \mathrm{~mol} \mathrm{O} / 1.56 \mathrm{~mol} \mathrm{~S}=2$ which is the same as the atom ratio.
4. If a type of stainless steel contains 18% chromium by mass, how many moles of chromium are present in a bar of this material weighing 1.5 kg ?

Answer: $\quad 5.2 \mathrm{~mol}$

Solution

What we know: mass of sample; mass \% Cr
Desired answer: mol Cr

The solution map for this calculation is:

$$
\mathrm{kg} \text { sample } \rightarrow \mathrm{g} \text { sample } \rightarrow \mathrm{g} \mathrm{Cr} \rightarrow \mathrm{~mol} \mathrm{Cr}
$$

The conversion factor needed in the first step is that between kg and g in the form $\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}$.
The conversion factor for the second step is the mass percent of Cr used in the form
$\frac{18 \mathrm{~g} \mathrm{Cr}}{100 \mathrm{~g} \text { sample }}$.
The conversion factor for the last step is the molar mass of Cr in the form $\frac{1 \mathrm{molCr}}{52.00 \mathrm{~g} \mathrm{Cr}}$.

Putting these together yields:
1.5 kgsample $\mathrm{x} \frac{10^{3} \text { gsample }}{1 \text { kgsample }} \times \frac{18 \text { g } \mathrm{gr}}{100 \text { gsample }} \times \frac{1 \mathrm{molCr}}{52.00 \mathrm{gCr}}=5.2 \mathrm{molCr}$

Stoichiometric Calculations (mole-to-mole)

1. Balance the following equation and state the meaning of the equation in terms of individual units of reactants and products and in terms of moles of reactants and products.

Answers:	$\mathrm{Al}(\mathrm{s})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mn}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$			
	4A1(s)	$+3 \mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow$	$3 \mathrm{Mn}(\mathrm{s})$	$+2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
	4 atoms	3 formula units	3 atoms	2 formula units
	4 mol	3 mol	3 mol	2 mol

Solution

To balance this equation, place a coefficient of 3 in front of MnO_{2} and a coefficient of 2 in front of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to balance oxygen atoms. This requires a coefficient of 3 in front of Mn to balance manganese atoms. Finally, a coefficient of 4 in front of Al will balance aluminum atoms. The balanced equation is:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow 3 \mathrm{Mn}(\mathrm{~s})+2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

At the most fundamental level this equation suggests that 4 atoms of aluminum react with 3 formula units of MnO_{2} to produce 3 atoms of Mn and 2 formula units of $\mathrm{Al}_{2} \mathrm{O}_{3}$. Multiplying each reactant amount and each product amount by the Avogadro constant yields 4 mol Al reacting with $3 \mathrm{~mol}_{\mathrm{MnO}_{2}}$ to form 3 mol Mn and $2 \mathrm{~mol}_{\mathrm{Al}_{2} \mathrm{O}_{3} \text {. }}$.
2. How many moles of CO_{2} are needed to react completely with 0.675 mol LiOH ?

$$
\mathrm{LiOH}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (unbalanced) }
$$

Answer: $\quad 0.338 \mathrm{~mol}$

Solution

What we know: mol LiOH ; equation relating CO_{2} and LiOH
Desired answer: $\quad \mathrm{mol} \mathrm{CO}_{2}$
The solution map for this calculation is:

$$
\mathrm{mol} \mathrm{LiOH} \rightarrow \mathrm{~mol} \mathrm{CO}_{2}
$$

The conversion factor needed is the mole ratio for these two substances from the balanced equation. To balance this equation place a coefficient of 2 in front of LiOH . The balanced equation is:

$$
2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Applying the mole ratio yields:
$0.675 \mathrm{molLiOH} \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molLiOH}}=0.338 \mathrm{molCO}_{2}$
3. Given the reaction

$$
4 \mathrm{FeS}(\mathrm{~s})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+4 \mathrm{SO}_{2}(\mathrm{~g})
$$

how many moles of O_{2} are needed to:
a) produce $0.693 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$?
b) react completely with 9.14 mol FeS ?
c) form $1.51 \mathrm{~mol} \mathrm{SO}_{2}$?

Answers: a) 2.43 mol
b) 16.0 mol
c) 2.64 mol

Solutions
a) What we know: $\quad \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$; balanced equation relating O_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Desired answer: $\quad \mathrm{mol} \mathrm{O}_{2}$

The solution map for this problem is:

$$
\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{~mol} \mathrm{O}_{2}
$$

The conversion factor needed is the mole ratio for these two substances from the balanced equation in the form $\frac{7 \mathrm{molO}_{2}}{2 \mathrm{molFe}_{2} \mathrm{O}_{3}}$.

Applying this yields:
$0.693 \mathrm{molFe}_{2} \mathrm{O}_{3} \times \frac{7 \mathrm{molO}_{2}}{2 \mathrm{molFe}_{2} \mathrm{O}_{3}}=2.43 \mathrm{~mol} \mathrm{O}_{2}$
b) What we know: mol FeS; balanced equation relating O_{2} and FeS

Desired answer: $\quad \mathrm{mol} \mathrm{O}_{2}$
The solution map for this problem is:

$$
\mathrm{mol} \mathrm{FeS} \rightarrow \mathrm{~mol} \mathrm{O}_{2}
$$

The conversion factor needed is the mole ratio for these two substances from the balanced equation in the form $\frac{7 \mathrm{molO}_{2}}{4 \mathrm{~mol} \mathrm{FeS}}$.

Applying this yields:
$9.14 \mathrm{molFeS} \times \frac{7 \mathrm{molO}_{2}}{4 \mathrm{molFeS}}=16.0 \mathrm{molO}_{2}$
c) What we know: $\quad \mathrm{mol} \mathrm{SO}_{2}$; balanced equation relating O_{2} and SO_{2}

Desired answer: $\quad \mathrm{mol} \mathrm{O}_{2}$
The solution map for this problem is:

$$
\mathrm{mol} \mathrm{SO}_{2} \rightarrow \mathrm{~mol} \mathrm{O}_{2}
$$

The conversion factor needed is the mole ratio for these two substances from the balanced equation in the form $\frac{7 \mathrm{molO}_{2}}{4 \mathrm{molSO}_{2}}$.

Applying this yields:
$1.51 \mathrm{molSO}_{2} \times \frac{7 \mathrm{molO}_{2}}{4 \mathrm{molSO}_{2}}=2.64 \mathrm{molO}_{2}$

Stoichiometric Calculations (mole-to-mass \& mass-to-mole)

1. How many moles of each product can be formed from the decomposition of 1.00 g of the rocket fuel hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$?

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

Answers: $\quad 0.0416 \mathrm{~mol} \mathrm{NH}_{3}$ and $0.0104 \mathrm{~mol} \mathrm{~N}_{2}$

Solution

What we know: $\quad \mathrm{g} \mathrm{N}_{2} \mathrm{H}_{4}$; balanced equation relating $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and $\mathrm{N}_{2} \mathrm{H}_{4}$
Desired answer: $\quad \mathrm{mol} \mathrm{NH}_{3}$ and mol N_{2}
The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{g} \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{molNH}_{3} \\
& \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~mol} \mathrm{~N}_{2}
\end{aligned}
$$

In each case, the conversion factor needed in the first step is the molar mass of $\mathrm{N}_{2} \mathrm{H}_{4}$. From the periodic table we can get the molar masses of nitrogen and hydrogen and add them as follows. $2(14.01 \mathrm{~g}) \mathrm{N}+4(1.008 \mathrm{~g}) \mathrm{H}=32.05 \mathrm{~g}$. Thus, the molar mass of $\mathrm{N}_{2} \mathrm{H}_{4}$ is $32.05 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.05 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}}$ in order to cancel units properly.

The conversion factor needed in the second step is the mole ratio for the particular product and $\mathrm{N}_{2} \mathrm{H}_{4}: \frac{4 \mathrm{molNH}_{3}}{3 \mathrm{molN}_{2} \mathrm{H}_{4}}$ and $\frac{1 \mathrm{molN}_{2}}{3 \mathrm{molN}_{2} \mathrm{H}_{4}}$

Putting these together yields:

$$
\begin{aligned}
& 1.00 \mathrm{gN}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{molN}_{2} \mathrm{H}_{4}}{32.05 \mathrm{NN}_{2} \mathrm{H}_{4}} \times \frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{molN}_{2} \mathrm{H}_{4}}=0.0416 \mathrm{~mol} \mathrm{NH}_{3} \\
& 1.00 \mathrm{gN}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{molN}_{2} \mathrm{H}_{4}}{32.05 \mathrm{gN}_{2} \mathrm{H}_{4}} \times \frac{1 \mathrm{molN}_{2}}{3 \mathrm{molN}_{2} \mathrm{H}_{4}}=0.0104 \mathrm{~mol} \mathrm{~N}_{2}
\end{aligned}
$$

Note that the number of moles of NH_{3} is four(4) times that of N_{2} as suggested by the balanced equation.
2. How many moles of oxygen gas are needed for the complete combustion of 19.6 g acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$?

Answer: $\quad 1.88$ mol

Solution

What we know: $\quad \mathrm{g} \mathrm{C}_{2} \mathrm{H}_{2}$
Desired answer: $\quad \mathrm{mol} \mathrm{O}_{2}$
First, a balanced equation is needed for the reaction between $\mathrm{C}_{2} \mathrm{H}_{2}$ and O_{2}. Since this is a combustion reaction, the products are $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(1)$.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Notice that the hydrogen atoms are balanced so first, balance the carbon atoms. Since there are 2 C atoms on the reactant side and only 1 C atom on the product side, a coefficient of 2 in front of CO_{2} will balance carbon atoms.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(\mathrm{H} \text { and } \mathrm{C} \text { atoms balanced })
$$

Finally, balance the oxygen atoms. Since there are 2 O atoms on the reactant side and 5 O atoms on the product side, multiplying O_{2} by $21 / 2$, or $5 / 2$, will balance oxygen atoms.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (all atoms balanced) }
$$

The fractional coefficient in front of O_{2} can be converted to the smallest whole number by multiplying by 2 . This requires that all other coefficients be multiplied by 2 in order to retain the atom balance. The resulting balanced equation is:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \begin{aligned}
& \text { (all atoms balanced using } \\
& \text { whole-number } \\
& \text { coefficients })
\end{aligned}
$$

The solution map for this problem is:

$$
\mathrm{g} \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{~mol} \mathrm{O}_{2}
$$

The conversion factor needed in the first step is the molar mass of $\mathrm{C}_{2} \mathrm{H}_{2}$. From the periodic table we can get the molar masses of carbon and hydrogen and add them as follows. $2(12.01 \mathrm{~g}) \mathrm{C}+$ $2(1.008 \mathrm{~g}) \mathrm{H}=26.04 \mathrm{~g}$. Thus, the molar mass of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $26.04 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{1 \mathrm{molC}_{2} \mathrm{H}_{2}}{26.04 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}}$ in order to cancel units properly.

The conversion factor needed in the second step is the mole ratio for these two substances from the balanced equation in the form $\frac{5 \mathrm{molO}_{2}}{2 \mathrm{molC}_{2} \mathrm{H}_{2}}$.

Putting these together yields:
$19.6 \mathrm{EC}_{2} \mathrm{H}_{2} \times \frac{1 \mathrm{molC}_{2} \mathrm{H}_{2}}{26.04 \mathrm{C}_{2} \mathrm{H}_{2}} \times \frac{5 \mathrm{molO}_{2}}{2 \mathrm{molC}_{2} \mathrm{H}_{2}}=1.88 \mathrm{molO}_{2}$
3. How many kilograms of $\mathrm{Li}_{2} \mathrm{O}$ are needed to react completely $4.17 \times 10^{3} \mathrm{~mol}_{2} \mathrm{O}$?

$$
\mathrm{Li}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{LiOH}(\mathrm{~s})
$$

Answer: $\quad 125 \mathrm{~kg}$
Solution
What we know: $\quad \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$; balanced equation relating $\mathrm{Li}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$
Desired answer: $\quad \mathrm{kg} \mathrm{Li}_{2} \mathrm{O}$
The solution map for this problem is:

$$
\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~mol} \mathrm{Li}_{2} \mathrm{O} \rightarrow \mathrm{~g} \mathrm{Li}_{2} \mathrm{O} \rightarrow \mathrm{~kg} \mathrm{Li}_{2} \mathrm{O}
$$

The conversion factor needed in the first step is the mole ratio for these two substances from the balanced equation in the form $\frac{1 \mathrm{molLi}_{2} \mathrm{O}}{1 \mathrm{~mol}_{2} \mathrm{O}}$.
The conversion factor needed in the second step is the molar mass of $\mathrm{Li}_{2} \mathrm{O}$. From the periodic table we can get the molar masses of lithium and oxygen and add them as follows. 2(6.941 g) $\mathrm{Li}+16.00 \mathrm{~g} \mathrm{O}=29.88 \mathrm{~g}$. Thus, the molar mass of $\mathrm{Li}_{2} \mathrm{O}$ is $29.88 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{29.88 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}}{1 \mathrm{molLi}_{2} \mathrm{O}}$ in order to cancel units properly.
The conversion factor needed in the last step is that between g and kg in the form $\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}$. Putting these together yields:
$4.17 \times 10^{3} \mathrm{~m}_{2} \mathrm{O} \times \frac{1 \mathrm{molLi}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}} \times \frac{29.88 \mathrm{gLi}_{2} \mathrm{O}}{1 \mathrm{molLi}_{2} \mathrm{O}} \times \frac{1 \mathrm{~kg} \mathrm{Li}_{2} \mathrm{O}}{10^{3} \mathrm{ELi} \mathrm{O}}=125 \mathrm{~kg} \mathrm{Li}_{2} \mathrm{O}$

4. Carbon dioxide is produced in the reaction

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (unbalanced) }
$$

How many grams of MgCO_{3} are needed to produce 14.8 moles of CO_{2} ?
Answer: $\quad 1.25 \times 10^{3} \mathrm{~g}$

Solution

What we know: $\quad \operatorname{mol~CO} 2$; equation relating MgCO_{3} and CO_{2}
Desired answer: $\quad \mathrm{g} \mathrm{MgCO}_{3}$
First, a balanced equation is needed. To balance this equation, place a coefficient of 2 in front of MgCO_{3} to balance magnesium atoms. Then place a coefficient of 2 in front of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to balance PO_{4} groups. Next, a coefficient of 3 in front of CO_{2} will balance carbon atoms. Finally, a coefficient of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ will balance hydrogen and oxygen atoms. The balanced equation is:

$$
2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The solution map for this problem is:

$$
\mathrm{mol} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{MgCO}_{3} \rightarrow \mathrm{~g} \mathrm{MgCO}_{3}
$$

The conversion factor needed in the first step is the mole ratio for these two substances from the balanced equation in the form $\frac{3 \mathrm{~mol} \mathrm{MgCO}_{3}}{3 \mathrm{~mol} \mathrm{CO}_{2}}$.
The conversion factor needed in the second step is the molar mass of MgCO_{3}. From the periodic table we can get the molar masses of magnesium, carbon and oxygen and add them as follows. $24.31 \mathrm{~g} \mathrm{Mg}+12.01 \mathrm{~g} \mathrm{C}+3(16.00 \mathrm{~g}) \mathrm{O}=84.32 \mathrm{~g}$. Thus, the molar mass of MgCO_{3} is 84.32 $\mathrm{g} / \mathrm{mol}$. It is used in the form $\frac{84.32 \mathrm{~g} \mathrm{MgCO}_{3}}{1 \mathrm{~mol} \mathrm{MgCO}_{3}}$ in order to cancel units properly.
Putting these together yields:

$$
14.8 \mathrm{molCO}_{2} \times \frac{3 \mathrm{~mol}_{\mathrm{MgCO}}^{3}}{} \times \frac{84.32 \mathrm{~g} \mathrm{MgCO}_{3}}{3 \mathrm{molCO}_{2}}=1.25 \times 10^{3} \mathrm{~g} \mathrm{MgCO}_{3}
$$

Stoichiometric Calculations (mass-to-mass)

1. How many grams of sulfur can react with 1.79 g of copper according to the following equation?

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{CuS}(\mathrm{~s})
$$

Answer: $\quad 0.903 \mathrm{~g}$

Solution

What we know: $\quad \mathrm{g} \mathrm{Cu}$; balanced equation relating S and Cu
Desired answer: g S
The solution map for this problem is:

$$
\mathrm{g} \mathrm{Cu} \rightarrow \mathrm{molCu} \rightarrow \mathrm{molS} \rightarrow \mathrm{~g} \mathrm{~S}
$$

The conversion factor needed in the first step is the molar mass of Cu . From the periodic table we see that the molar mass of copper is $63.55 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{1 \mathrm{molCu}}{63.55 \mathrm{~g} \mathrm{Cu}}$ in order to cancel units properly.

The conversion factor needed in the second step is the mole ratio for these two substances from the balanced equation in the form $\frac{1 \mathrm{molS}}{1 \mathrm{molCu}}$.

The conversion factor needed in the last step is the molar mass of S . From the periodic table we see that the molar mass of sulfur is $32.07 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{molS}}$ in order to cancel units properly.

Putting these together yields:
$1.79 \mathrm{gCt} \times \frac{1 \mathrm{molCt}}{63.55 \mathrm{~g} \mathrm{Ct}} \times \frac{1 \mathrm{molS}}{1 \mathrm{molCt}} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{molS}}=0.903 \mathrm{~g} \mathrm{~S}$
2. How many grams of chlorine gas are required to react completely with 0.455 g iron to form iron(III) chloride?

Answer: $\quad 0.867 \mathrm{~g}$

Solution

What we know: g Fe
Desired answer: $\quad \mathrm{g} \mathrm{Cl}_{2}$
First, a balanced equation is needed for the reaction between Fe and Cl_{2}. The unbalanced equation for this combination reaction is:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeCl}_{3}(\mathrm{~s})
$$

To balance this equation, place a coefficient of 2 in front of FeCl_{3} and a coefficient of 3 in front of Cl_{2} to balance chlorine atoms. This requires a coefficient of 2 in front of Fe to balance iron atoms. The balanced equation is:

$$
2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{~s})
$$

The solution map for this problem is:

$$
\mathrm{g} \mathrm{Fe} \rightarrow \mathrm{~mol} \mathrm{Fe} \rightarrow \mathrm{~mol} \mathrm{Cl}_{2} \rightarrow \mathrm{~g} \mathrm{Cl}_{2}
$$

The conversion factor needed in the first step is the molar mass of Fe. From the periodic table we see that the molar mass of iron is $55.84 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{1 \mathrm{molFe}}{55.84 \mathrm{~g} \mathrm{Fe}}$ in order to cancel units properly.
$\frac{70.90 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{molCl}_{2}}$

The conversion factor needed in the second step is the mole ratio for these two substances from the balanced equation in the form $\frac{3 \mathrm{molCl}_{2}}{2 \mathrm{molFe}}$.
The conversion factor needed in the last step is the molar mass of Cl_{2}. From the periodic table we see that the molar mass of chlorine is $35.45 \mathrm{~g} / \mathrm{mol}$ so the molar mass of Cl_{2} is $2(35.45 \mathrm{~g} / \mathrm{mol})$ $=70.90 \mathrm{~g} / \mathrm{mol}$. It is used in the form in order to cancel units properly.
Putting these together yields:

$$
0.455 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{molFe}}{55.84 \mathrm{gFe}} \times \frac{3 \mathrm{molCl}_{2}}{2 \mathrm{molFe}} \times \frac{70.90 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{molCl}_{2}}=0.867 \mathrm{~g} \mathrm{Cl}_{2}
$$

3. How many grams of each product can be formed from the decomposition of 14.0 g of sodium chlorate?

$$
2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Answers: $\quad 7.69 \mathrm{~g} \mathrm{NaCl}$ and $6.31 \mathrm{~g} \mathrm{O}_{2}$

Solution

What we know: $\quad \mathrm{g} \mathrm{NaClO}_{3}$; balanced equation relating $\mathrm{NaCl}, \mathrm{O}_{2}$ and NaClO_{3}
Desired answer: $\quad \mathrm{g} \mathrm{NaCl}$ and $\mathrm{g} \mathrm{O}_{2}$
The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{g} \mathrm{NaClO}_{3} \rightarrow \mathrm{~mol} \mathrm{NaClO}_{3} \rightarrow \mathrm{~mol} \mathrm{NaCl} \rightarrow \mathrm{~g} \mathrm{NaCl} \\
& \mathrm{~g} \mathrm{NaClO}_{3} \rightarrow \mathrm{~mol} \mathrm{NaClO}_{3} \rightarrow \mathrm{~mol} \mathrm{O}_{2} \rightarrow \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
$$

In each case, the conversion factor needed in the first step is the molar mass of NaClO_{3}. From the periodic table we can get the molar masses of sodium, chlorine and oxygen and add them as follows. $22.99 \mathrm{~g} \mathrm{Na}+35.45 \mathrm{~g} \mathrm{Cl}+3(16.00 \mathrm{~g}) \mathrm{O}=106.44 \mathrm{~g}$. Thus, the molar mass of NaClO_{3} is $106.44 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{1 \mathrm{~mol} \mathrm{NaClO}_{3}}{106.44 \mathrm{~g} \mathrm{NaClO}_{3}}$ in order to cancel units properly.

The conversion factor needed in the second step is the mole ratio for the particular product and $\mathrm{N}_{2} \mathrm{H}_{4}: \frac{2 \mathrm{~mol} \mathrm{NaCl}^{2}}{2 \mathrm{~mol} \mathrm{NaClO}_{3}}$ and $\frac{3 \mathrm{molO}_{2}}{2 \mathrm{~mol} \mathrm{NaClO}_{3}}$

The conversion factor needed in the last step is the molar mass of the product: $\frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}$ and $\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{molO}_{2}}$

Putting these together yields:

$$
\begin{aligned}
& 14.0 \mathrm{gNaCl}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaClO}_{3}}{106.44 \mathrm{NaClO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}^{2 \mathrm{~mol} \mathrm{NaClO}_{3}}}{2} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=7.69 \mathrm{~g} \mathrm{NaCl} \\
& 14.0 \mathrm{gNaClO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaClO}_{3}}{106.44 \mathrm{NaClO}_{3}} \times \frac{3 \mathrm{molO}_{2}}{2 \mathrm{~mol} \mathrm{NaClO}_{3}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{molO}_{2}}=6.31 \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
$$

Note that the total mass of the products equals the mass of the reactant.
4. How many grams of potassium are needed to produce $16.5 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}$?

$$
\mathrm{KNO}_{3}(\mathrm{~s})+\mathrm{K}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \quad \text { (unbalanced) }
$$

Answer: $\quad 0.867 \mathrm{~g}$

Solution

What we know: $\quad \mathrm{kg} \mathrm{K}_{2} \mathrm{O}$; equation relating K and $\mathrm{K}_{2} \mathrm{O}$
Desired answer: $\quad \mathrm{g} \mathrm{K}$
First, a balanced equation is needed. To balance this equation, place a coefficient of 2 in front of KNO_{3} to balance nitrogen atoms. Then place a coefficient of 6 in front of $\mathrm{K}_{2} \mathrm{O}$ to balance oxygen atoms. Finally, a coefficient of 10 in front of K will balance potassium atoms. The balanced equation is:

$$
2 \mathrm{KNO}_{3}(\mathrm{~s})+10 \mathrm{~K}(\mathrm{~s}) \rightarrow 6 \mathrm{~K}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})
$$

The solution map for this problem is:

$$
\mathrm{kg} \mathrm{~K}_{2} \mathrm{O} \rightarrow \mathrm{~g} \mathrm{~K}_{2} \mathrm{O} \rightarrow \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O} \rightarrow \mathrm{molK} \rightarrow \mathrm{~g} \mathrm{~K}
$$

The conversion factor needed in the first step is that between kg and g in the form $\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}$.

The conversion factor needed in the second step is the molar mass of $\mathrm{K}_{2} \mathrm{O}$ in the form $\frac{1 \mathrm{molK}_{2} \mathrm{O}}{94.20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}}$.

The conversion factor needed in the third step is the mole ratio for these two substances from the balanced equation in the form $\frac{10 \mathrm{molK}}{6 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}$.

The conversion factor needed in the last step is the molar mass of K . From the periodic table we see that the molar mass of potassium is $39.10 \mathrm{~g} / \mathrm{mol}$. It is used in the form $\frac{39.10 \mathrm{~g} \mathrm{~K}}{1 \mathrm{molK}}$ in order to cancel units properly.

Putting these together yields:
$16.5 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O} \times \frac{10^{3} \mathrm{gK}_{2} \mathrm{O}}{1 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}} \times \frac{1 \mathrm{molk}_{2} \mathrm{O}}{94.20 \mathrm{gK}_{2} \mathrm{O}} \times \frac{10 \mathrm{molK}}{6 \mathrm{molK}_{2} \mathrm{O}} \times \frac{39.10 \mathrm{gK}}{1 \mathrm{molK}}=1.14 \times 10^{4} \mathrm{~g} \mathrm{~K}$

Theoretical Yield and Limiting Reactant

1. Which is the limiting reactant when 0.68 g magnesium reacts with 17 mmol nitrogen gas to form $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?

Answer: $\quad \mathrm{Mg}$
Solution
What we know: $\quad \mathrm{g} \mathrm{Mg} ; \mathrm{mmol}_{2}$
Desired answer: which reactant, Mg or N_{2}, is the limiting reactant
The balanced equation for this combination reaction is:

$$
3 \mathrm{Mg}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})
$$

First, determine the limiting reactant by calculating how many moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ can form from each starting amount of reactant. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{g} \mathrm{Mg} \rightarrow \mathrm{~mol} \mathrm{Mg} \rightarrow \mathrm{~mol} \mathrm{Mg} \mathrm{~N}_{2} \\
& \mathrm{mmol} \mathrm{~N}_{2} \rightarrow \mathrm{~mol} \mathrm{~N}_{2} \rightarrow \mathrm{~mol} \mathrm{Mg}_{3} \mathrm{~N}_{2}
\end{aligned}
$$

For the first calculation the conversion factor needed in the first step is the molar mass of Mg in the form $\frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}$.

The conversion factor needed for the second step is the $\mathrm{Mg}_{3} \mathrm{~N}_{2} / \mathrm{Mg}$ mole ratio from the balanced equation.

Applying these yields:
$0.68 \mathrm{Mg} \times \frac{1 \mathrm{molMg}}{24.31 \mathrm{Mg}} \times \frac{1 \mathrm{molMg}_{3} \mathrm{~N}_{2}}{3 \mathrm{molMg}}=0.0093 \mathrm{~mol} \mathrm{Mg}_{3} \mathrm{~N}_{2}$
For the second calculation the conversion factor needed in the first step is that between mmol and mol in the form $\frac{10^{-3} \mathrm{~mol}}{1 \mathrm{mmol}}$.

The conversion factor needed in the second step is the $\mathrm{Mg}_{3} \mathrm{~N}_{2} / \mathrm{N}_{2}$ mole ratio from the balanced equation.

Applying this yields:

$$
17 \mathrm{mmolN}_{2} \times \frac{10^{-3} \mathrm{molN}_{2}}{1 \mathrm{mmolN}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Mg}_{3} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2}}=0.017 \mathrm{~mol} \mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

Since the starting amount of Mg produces the smaller amount of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$, magnesium is the limiting reactant.
2. How many moles of AsF_{5} can be produced when 14 moles of arsenic react with 29 mol fluorine gas?

Answer: 12 mol

Solution

What we know: mol As; mol F2
Desired answer: mol AsF 5
The balanced equation for this combination reaction is:

$$
2 \mathrm{As}(\mathrm{~s})+5 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AsF}_{5}(\mathrm{~g})
$$

First, determine the limiting reactant by calculating how many moles of AsF_{5} can form from each starting amount of reactant. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{As} \rightarrow \mathrm{~mol} \mathrm{AsF}_{5} \\
& \mathrm{~mol} \mathrm{~F}_{2} \rightarrow \mathrm{~mol} \mathrm{AsF}_{5}
\end{aligned}
$$

For the first calculation the conversion factor needed is the $\mathrm{AsF}_{5} /$ As mole ratio from the balanced equation.

Applying this yields:

$$
14 \mathrm{~mol} \mathrm{As} \times \frac{2 \mathrm{~mol} \mathrm{AsF}_{5}}{2 \mathrm{~mol} \mathrm{As}}=14 \mathrm{~mol} \mathrm{AsF}_{5}
$$

For the second calculation the conversion factor needed is the $\mathrm{AsF}_{5} / \mathrm{F}_{2}$ mole ratio from the balanced equation.

Applying this yields:
$29 \mathrm{molF}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AsF}_{5}}{5 \mathrm{molF}_{2}}=12 \mathrm{~mol} \mathrm{AsF}_{5}$
Since the starting amount of F_{2} produces the smaller amount of AsF_{5}, fluorine is the limiting reactant and the maximum moles of AsF_{5} is 12 moles.
3. When 26.5 g CO and $3.7 \mathrm{~g} \mathrm{H}_{2}$ are allowed to react as shown below,

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})
$$

a) which is the limiting reactant?
b) what is the theoretical yield in grams of $\mathrm{CH}_{3} \mathrm{OH}$?
c) how much of the reactant in excess remains?

Answers: a) H_{2}
b) 29.32 g
c) 0.8 g

Solutions

a) What we know: $\quad \mathrm{g} \mathrm{CO} ; \mathrm{g} \mathrm{H}_{2}$; balanced equation relating $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$

Desired answer: which reactant, CO or H_{2}, is the limiting reactant
Determine the limiting reactant by calculating how many moles of $\mathrm{CH}_{3} \mathrm{OH}$ can form from each starting amount of reactant. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{g} \mathrm{CO} \rightarrow \mathrm{molCO} \rightarrow \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \\
& \mathrm{~g} \mathrm{H}_{2} \rightarrow \mathrm{~mol} \mathrm{H}_{2} \rightarrow \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}
\end{aligned}
$$

For the first calculation the conversion factors needed are the molar mass of CO and the $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CO}$ mole ratio.

Putting these together yields:

$$
26.5 \mathrm{CO} \times \frac{1 \mathrm{molCO}}{28.01 \mathrm{CO}} \times \frac{1 \mathrm{molCH}_{3} \mathrm{OH}}{1 \mathrm{molCO}}=0.946 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}
$$

For the second calculation the conversion factors needed are the molar mass of H_{2} and the $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2}$ mole ratio.

Putting these together yields:

$$
3.7 \mathrm{gH}_{2} \times \frac{1 \mathrm{molH}_{2}}{2.016 \mathrm{gH}_{2}} \times \frac{1 \mathrm{molCH}_{3} \mathrm{OH}}{2 \mathrm{molH}_{2}}=0.918 \mathrm{molCH}_{3} \mathrm{OH}
$$

Since the starting amount of H_{2} produces the smaller amount of $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}_{2}$ is the limiting reactant.
b) What we know: $\quad \mathrm{mol} \mathrm{CH}_{3} \mathrm{OH}$ produced from limiting reactant

Desired answer: theoretical yield of $\mathrm{CH}_{3} \mathrm{OH}$ in grams
Since the theoretical yield is the amount of product produced from the limiting reactant, the solution map for this calculation is:

```
mol CH3OH}->\mp@subsup{\textrm{g CH}}{3}{}\textrm{OH
```

The conversion factor needed for this calculation is the molar mass of $\mathrm{CH}_{3} \mathrm{OH}$.

Applying this yields:
$0.918 \mathrm{molCH}_{3} \mathrm{OH} \times \frac{32.04 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}}{1 \mathrm{molCH}_{3} \mathrm{OH}}=29.32 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}$
c) What we know: $\mathrm{mol} \mathrm{CH}_{3} \mathrm{OH}$ produced from limiting reactant

Desired answer: $\quad \mathrm{g}$ CO remaining

Use the theoretical yield of $\mathrm{CH}_{3} \mathrm{OH}$ to calculate how much CO was used and subtract this from the starting quantity. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{molCO} \rightarrow \mathrm{~g} \mathrm{CO} \text { used } \\
& \mathrm{g} \mathrm{CO} \text { remaining }=\mathrm{g} \mathrm{CO} \text { initially }-\mathrm{g} \mathrm{CO} \text { used }
\end{aligned}
$$

For the first calculation the conversion factors needed are the $\mathrm{CO} / \mathrm{CH}_{3} \mathrm{OH}$ mole ratio and the molar mass of CO.

Putting these together yields:
$0.918 \mathrm{molCH}_{3} \mathrm{OH} \times \frac{1 \mathrm{molCO}}{1 \mathrm{molCH}_{3} \mathrm{OH}} \times \frac{28.01 \mathrm{~g} \mathrm{CO}}{1 \mathrm{molCO}}=25.7 \mathrm{~g} \mathrm{CO}$ used
Therefore, the mass of CO that remains equals $26.5 \mathrm{~g}-25.7 \mathrm{~g}=0.8 \mathrm{~g}$.
4. How many kilograms of the excess reactant remain when a mixture of 2.50 kg of SiO_{2} and 2.50 kg of carbon react?

$$
\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})
$$

Answer: $\quad 1.00 \mathrm{~kg}$
Solution
What we know: $\quad \mathrm{kg} \mathrm{SiO}_{2} ; \mathrm{kg} \mathrm{C}$; balanced equation relating SiO_{2} and C
Desired answer: $\quad \mathrm{kg}$ of excess reactant remaining

First, determine the limiting reactant by calculating how many moles of SiC can form from each starting amount of reactant. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{kg} \mathrm{SiO}_{2} \rightarrow \mathrm{~g} \mathrm{SiO}_{2} \rightarrow \mathrm{~mol} \mathrm{SiO}_{2} \rightarrow \mathrm{~mol} \mathrm{SiC} \\
& \mathrm{~kg} \mathrm{C} \rightarrow \mathrm{gC} \rightarrow \mathrm{molC} \rightarrow \mathrm{~mol} \mathrm{SiC}
\end{aligned}
$$

For the first calculation the conversion factors needed are that between kg and g, the molar mass of SiO_{2} and the $\mathrm{SiC} / \mathrm{SiO}_{2}$ mole ratio from the balanced equation.

Putting these together yields:

$$
2.50 \mathrm{~kg} \mathrm{SiO}_{2} \times \frac{10^{3} \mathrm{SSiO}_{2}}{1 \mathrm{KgSiO}_{2}} \times \frac{1 \mathrm{~mol}^{2} \mathrm{SiO}_{2}}{60.09 \mathrm{SSiO}_{2}} \times \frac{1 \mathrm{molSiC}_{\mathrm{SiC}}}{1 \mathrm{molSiO}_{2}}=41.6 \mathrm{~mol} \mathrm{SiC}
$$

For the second calculation the conversion factors needed are that between kg and g, the molar mass of C and the $\mathrm{SiC} / \mathrm{C}$ mole ratio from the balanced equation.

Putting these together yields:

$$
2.50 \mathrm{kgC} \times \frac{10^{3} \mathrm{gC}}{1 \mathrm{kgC}} \times \frac{1 \mathrm{molC}}{12.01 \mathrm{gC}} \times \frac{1 \mathrm{molSiC}}{3 \mathrm{molC}}=208 \mathrm{molSiC}
$$

Since the starting amount of SiO_{2} produces the smaller amount of $\mathrm{SiC}, \mathrm{SiO}_{2}$ is the limiting reactant and carbon is the reactant in excess.

Now use the theoretical yield of $\operatorname{SiC}(41.6 \mathrm{~mol})$ to calculate how much C was used and subtract this from the starting quantity. The solution maps for these calculations are:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{SiC} \rightarrow \mathrm{~mol} \mathrm{C} \text { used } \rightarrow \mathrm{g} \mathrm{CO} \text { used } \rightarrow \mathrm{kg} \mathrm{CO} \text { used } \\
& \mathrm{kg} \mathrm{C} \text { remaining }=\mathrm{kg} \mathrm{C} \text { initially }-\mathrm{kg} \mathrm{C} \text { used }
\end{aligned}
$$

For the first calculation the conversion factors needed are the $\mathrm{C} / \mathrm{SiC}$ mole ratio, the molar mass of C and the relationship between g and kg .

Putting these together yields:
41.6 molsiC $\times \frac{3 \mathrm{molC}}{1 \mathrm{molSiC}} \times \frac{12.01 \mathrm{gC}}{1 \mathrm{molC}} \times \frac{1 \mathrm{~kg} \mathrm{C}}{10^{3} \mathrm{gC}}=1.50 \mathrm{~kg} \mathrm{C}$ used

Therefore, the mass of C that remains equals $2.50 \mathrm{~kg}-1.50 \mathrm{~kg}=1.00 \mathrm{~kg}$.

