THE INFAMOUS HYPERBOLIC EQUATION IN BIOCHEMISTRY

Hyperbolic equations appear in biochemistry in a number of forms.

Here are several forms commonly encountered:

Binding of O₂ to myoglobin:

Proportion of myoglobin bound to O₂

 $Mb + O_2 W MbO_2$

$$Y = \begin{array}{cccc} MbO_2 & MbO_2 \\ \hline Total Mb & MbO_2 + MbO_2 \end{array}$$

Velocity of enzyme-catalyzed reaction:

$$V_{o} = V_{max} \mathfrak{S}_{o}$$

$$V_{max} \mathfrak{S}_{o}$$

$$K_{m} + S_{o}$$

E + S W E @S W E + P

 V_o % [ES] at all E_o , S_o

At low S_o , [ES] % $[S_o]$ so V_o % $[S_o]$

At high $S_{\scriptscriptstyle o}$, [E§S] is maximum, and $V_{\scriptscriptstyle o} = V_{\scriptscriptstyle max}$

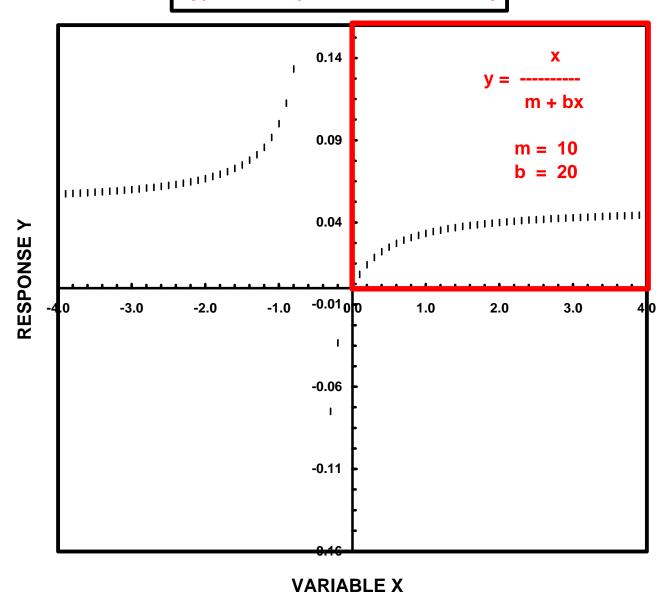
Proportion of an ionizable functional group in the conjugate base or acid form:

 $HA W A^{-} + H^{+}$

 $[HA]_{T} = [HA] + [A^{-}]$

Proportion of
$$A^{\!\scriptscriptstyle -} = \begin{matrix} K_a \\ ----- \\ K_a + [H^+] \end{matrix}$$

Proportion [HA] =
$$[HA] = [HA] + [A^{\cdot}]$$


$$Proportion [A^{\cdot}] = [A^{\cdot}]$$

$$[HA] + [A^{\cdot}]$$

Proportion of free E (not total E_o) bound to an inhibitor

$$1/$$
 = K_i
 $K_i + [I]$

Hyperbolic Equation in Biochemistry

Hyperbolic form of equation used in biochemistry (positive x and y quadrant) for analysis of enzyme kinetics, acid-base behavior, and absorption processes (e. g., binding of O_2 to myoglobin).

The double reciprocal plot of data in the positive x and y quadrant, 1/y = m*1/x + b, is used to obtain values of m and b.