LIMITING REAGENTS, THEORETICAL, ACTUAL AND PERCENT YIELDS

A limiting reagent is a chemical reactant that limits the amount of product that is formed. The limiting reagent gives the smallest yield of product calculated from the reagents (reactants) available. This smallest yield of product is called the theoretical yield.

To find the limiting reagent and theoretical yield, carry out the following procedure:

1. Find the moles of each reactant present.
2. Calculate the moles of a product formed from each mole of reactant.
3. Identify the reactant giving the smaller number of moles of product. This reactant is the Limiting Reagent:
4. Calculate the grams of product produced by the Limiting Reagent. This is the theoretical yield.

THEORETICAL YIELD

The theoretical yield is the amount of the product in g formed from the limiting reagent. From the moles of limiting reagent available, calculate the grams of product that is theoretically possible (same as Step 4 above).

ACTUAL YIELD

The actual yield is the amount of the product in g actually formed in the laboratory.

PERCENT YIELD

The percent yield is the percent of the product formed based upon the theoretical yield.
actual yield in g
$-----------------\quad$ x $100 \% \quad=\quad$ Percent Yield

LIMITING REAGENTS, THEORETICAL, ACTUAL AND PERCENT YIELDS

EXAMPLE OF A LIMITING REAGENT PROBLEM

How many grams of NH_{3} can be be produced (theoretically) from the reaction of 5.0 g of \mathbf{N}_{2} and $5.0 \mathrm{H}_{2}$? What is the limiting reagent? If 8.52 g are actually formed, what is the percent yield of NH_{3} ?

Balance: $3 \mathrm{H}_{2} \quad+\quad \mathrm{N}_{2} \quad \rightarrow \quad 2 \mathrm{NH}_{3}$
Find
$1 \mathrm{~mole} \mathrm{H}_{2}:$
$2 \times 1.01 \mathrm{~g} \mathrm{H}=2.01 \mathrm{~g}$
1 mole N_{2} :
$2 \times 14.01 \mathrm{~g}=28.02 \mathrm{~g}$
1 mole NH_{3} :
$3 \times 1.01 \mathrm{~g}=3.03 \mathrm{~g} \mathrm{H}$
$1 \times 14.01 \mathrm{~g}=14.01 \mathrm{~g} \mathrm{~N}$
\qquad $17.04 \mathrm{~g} \mathrm{NH}_{3}$

To answer this type of question, carry out EACH step of the following procedure:

1. Find the g of product produced from each of the given amounts of reactants.

For $\mathrm{H}_{2}: 5.0 \mathrm{~g} \mathrm{H}_{2} \quad \mathrm{x}$	$\frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2.02 \mathrm{~g} \mathrm{H}_{2}}$	x	$\frac{2 \text { mole } \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}$	x	$\frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}$	$=$	$28.12 \mathrm{~g} \mathrm{NH}_{3}$
For $\mathrm{N}_{2}: 5.0 \mathrm{~g} \mathrm{~N}_{2}$	$\mathrm{x} \frac{1 \mathrm{~mole} \mathrm{~N}_{2}}{140.01 \mathrm{~g} \mathrm{~N}_{2}}$	x	$\frac{2 \mathrm{~mole} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}$	x	$\frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{\frac{1 \mathrm{~mol} \mathrm{NH}}{3}}$		$12.16 \mathrm{~g} \mathrm{NH}_{3}$ figures here)

2. Identify the smaller amount of calculated product:

This is the maximum amount of product that can be formed. The larger amount cannot be formed because there is not enough of the limiting reagent present.
12.16 g is the smaller amount calculated.
3. Identity the reactant that gives the smallest amount of product.

The limiting reagent is N_{2}.
The limiting reagent determines the amount of product formed.
4. Identify the THEORETICAL YIELD:

The theoretical yield is the amount of the product (in g) formed from the
limiting reagent.
5. Identify the ACTUAL YIELD:

The actual yield is the amount of the product (in g or mol) actually formed in 8.25 g is the actual yield.
the laboratory.
6. Calculate the PERCENT YIELD: The percent yield is based upon the theoretical yield.

actual yield (g)				8.25 g	
--------------------	x 100%	Percent Yield	$=$	---------- x 100 \% =	68\%
theoretical yield (g)			(For	$12.16 \mathrm{~g}$ retical yield, carry more	figs. in this
calculation)					

[^0]
[^0]: Final sig. figs. limited by the given amounts of reactants.

