

When are you graduating?
A. Last spring 0\%
B. This fall

23\%

C. Next spring
60%
D. Later

SOC497 @ CSUN w/ Ellis Godard

Reminders: ToDon'ts...

wait to draft your survey questions

- wait until night b4 midterm due to start
- forget to ID a secretary on labs (3+)
use the "measure" column to find LOM
use all Central Tendency or Dispersion measures for the same variable \& dataset @ once
say "prove" about any scientific idea
- say any output, ever, is "normal" - it isn't!
- call me "Godard" ©


```
    *)
    Outline for Today
    Continuing on theme of data cleaning...
    -Complex Variables
    - Indices - concepts, steps, examples
    - Scales
        - Meaning, Types, vs. Indices
    - Typologies
Missing Values
    - 2 kinds, What's "Missing"?, 7 Solutions
    \SPSS Demo & Lab
```

 SOC497 @ CSUN w/ Ellis Godard

Intro to Complex Variables

Needing multiple measures

- Concepts have varied meanings
- Meanings have multiple operationalizations
- May need more than 1 measure to assess

That's a challenge!

- Manipulating many variables simultaneously may be tricky, difficult, inappropriate, or impossible
$\Delta 3$ tools to resolve these problems (B says 2?)
- Indices: accumulate scores (compute, count, IF)
- Scales: score patterns or intensity structures
- Typologies: label specific intersections of variables soc497 @ CSUN w/ Ellis Godard

Basic Concept for Indices

Δ Purpose: Instead of using separate variables, combine 'em

- You've done this before:
- TOTPERWK $=$ MILES $*$ TRIPS *2
Δ No limit to procedures or \# of variables - Additive: ABALL $=$ ABMOM + ABBABY + ABPOOR + ABRAPE - Multiplicative: Status $=($ income x education) $/$ famsize \diamond Hint (important!):
- Subtract the \# of components with a lowest valid value is 1
- Otherwise, minimum could be 4 (i.e. $1+1+1+1$)
- But now it will be $0(1+1+1+1-4)$, which is meaningful

SOC497 @ CSUN w/ Ellis Godard

Indicators of a Common Factor

- Index components should be related
- Conceptually, not just statistically
- Components each indicate a factor common to all
- Aggregation of components measures intensity or diversity of that factor
- Example: whether someone is a good student
- ask whether respondents agree or disagree w/ these statements:
- 1. I a ttend every class
- 2. I study every night
- A good student should agree with both statements
- Both índicators reflect a good student.
- Doing either is a good student; doing both is even "better" more intense, more diverse, thank just doing one SOC497 @ CSUN w/ Ellis Godard

Guidelines for Well-Designed Indices

Most have to do w/ selection of the components, rather than the process of actually combining them

- Step 1: Item selection
- face/logical validity
- unidimensionality
- Variance - all say "if patient wants it"?
- Step 2: Bivariate relationships
- Should be correlated with each other ($r>0.2$?)...
- ... but not perfectly, because then only 1 needed
- All in same direction!! (valence)
sOC497@ CSUN w/ Ellis Godard
14

Example w/ Valence Issue

\bullet For all five questions please answer strongly agree, agree, disagree, or strongly disagree.

- Q1: President Bush should not go to war.
- Q2: Congress should authorize a war against Iraq.
- Q3: I am against killing of other humans.
- Q4: If American troops are sent into battle, it will be a just cause.
- Q5: Most of my friends do not support a war against Iraq.

Step 4: Scoring

A. Assign a numerical value to each indicator.

- Agree $=1$ Disagree $=0$
- $\quad S A=5, A=4, N=3, D=2, S D=1$
B. Assess how missing values will be handled 7 strategies - later this lecture
. . If any case is missing a component value, can't calculate index value!
C. Determine what range is desired
- Prefer 2-4 per component (if more, extremes get sparse), 3-9 overall
- Otherwise, extremes get sparse
- Hint: if addings 1 s and 2 s , subtract the \# of measures
D. Determine how the components should be weighted
- Equal unless compelling reason to do otherwise

Step 3: Multivariate Relationships

- Babbie shows a good trivariate example
- Review it - uses crosstabs!
- We'll use Cronbach's alpha of reliability
- Technical Definition
- "squared correlation between the score a person obtains on a particular scale and the score the person would have obtained on a scale of all the possible items in that scale's universe"
- In SPSS: Analyze - Scales - Reliability Analysis
- Just pick variables and get alpha;
don't need to select any other options or stats
- Approximate interpretation:
- Higher the value, more reliable the index is
- \% of the time the components correspond to each other SOC497 @ CSUN w/ Ellis Godard

Step 5: Validation

Four options..
A. Inspect sample cases

- Look across some rows - make sense? Combine correctly?
B. Conduct item analysis
- Statistically measure extent to which composite measure is related to or associated with the included items
- Pearson's correlation coefficient (0.2 or higher)
- Cronbach's alpha of reliability (?)

Step 5: Validation, cont'd

C. Seek external validation

- Use other items in dataset
- ~ construct validity
euthanasia index correspond w/ aboition?
Death penalty? Death penalty?
- If not mesh, possibilities:

Either the index or included items don't measure the concept
Sampling problem (next lecture)

- Re-examine index first
become more explicit about the concept compassion? Fear of death?
D. Shortcut: use established measures!

designed index...

A. are perfectly correlated
. 3%
B. have at least 5 values each

18\%
C. have consistent response valence
36%
D. relate to at least two dimensions

12\%

Introducing "Scales"

- Texts
- Scales as levels of measurement
-SPSS
- Scale as interval or ratio measures
- Technical
- Scale as an intensity structure
- Ranks cases on a continuum
- Combines related ordinal measures
- Like a specific kind of index... SOC497 @ CSUN w/ Ellis Godard 25

Scales: A Special Case

What level of measurement are they?

- Textbooks often say interval
- Seem ordinal to me (differences not equal)
- Unsettled debate - see the "schemapiric view" S Stevens, Science 30, Aug 1968, V 161, № 3844, p849-856, "Measurement Stats and the Schemapiric view"
When in doubt, treat as both
- E.g. consider the mean and median
- Each procedure has assumptions; compare results
- Like triangulation - alt perspective = deeper inquiry

Indices vs. Scales

- What they have in common
- both can be composite measures of variables (built by combining 2 or more measurements)
How are they different
- Indexes accumulate different kinds of scores; e.g. miles \& trips

Scales assess patterns across similar measures e.g. varied abortion attitudes

- Scales involve ordinal components, Indices combine anything

[^0]

Intensity Scaling

```
- Bogardus Social Distance Scale
- Measures willingness to participate in social relations
- ethanize stranger > spouse (distance)
- Guttman Scaling
- Hard vs. easy indicators of the same concept - cold, HIV, coma, full-blown AIDS, severed head
- Some items may prove more extreme indicators
- Support life in prison for causing death while DUI
- Support life for \(2^{\text {nd }}\) degree murder
- Support life for \(1^{\text {st }}\) degree murder
- Scoring would be 3, 2, 1, top to bottom
SOC497 @ CSUN w/ Ellis Godard 29
```


Low/High Precision Scaling

- Semantic Differential
- Choosing between two opposite positions
- Emotional......................Rational
- Sensitive.................Competitive
- Relaxed Active
- Thurstone Scales
- Attempt to define intervals on an ordinal scale
- Uses a panel of experts to judge items and score them
- They evaluate based on their own criteria


```
    When to use which?
    \Scales are generally superior to indexes
    But often difficult (even impossible) to
        construct from available or achievable data
        - Scales require planning in advance
        - Indices are usually constructed post hoc
        -Indexes are more frequently used
        - But their construction is not obvious or
        straightforward
        -Must be explicitly explained & defended
```


What is "Missing"?

-Missing Values?

- Various abbreviations
- DK (don't know), NA (No answer), NAP (Did not apply), RF (Refusal), et al
- Should be in "missing" column of variable view
- Click cell then elipses ("..." in a grey box
- List single value, up to 3, range, or range plus 1
- Tells SPSS to exclude cases w/ those values from any statistical analysis or data displays
- But ignoring values is not the only option...

7 Solutions for Missing Values

- Must explicitly describe \& defend whatever strategy you select
- 3 options that confront missing data:
- exclude that value, esp. if few (most likely for DK,NA,NAP)
- exclude that variable (esp if too many cases) as having insufficient observations measured
- treat as a response category or variable (esp other values)
- Four options "impute" a replacement:
- assign a random value (very risky)
- impute middle or mean (slightly less risky)
- interpret/imply answer from another variable (still risky)
- assign proportion of what do have (works if index reliable) - Imagine an index with nine items, and a respondent who only answers six, 4 Yes and 2 No -> assign 2 Y's \& 1 No for the others

Lab Assignment Continuity...

Last lab: Grouping hero types

- Family members?
- Entertainment figure?
- Historical persons?

This lab: Combining abortion attitudes

- First, combine variables (compute)
- Second, analyze attributes (elem stats)
- Must go beyond last data lab -
- tell story, summarize the data, describe the sample!

SOC497 @ CSUN w/ Ellis Godard
42

Lab Demo-ish: Indices

- Rshows.sav
- Measures of whether Rs watched 8 reality shows - 1 if they did, 0 if they didn't

RSHOWS variable is an index

- Like TOTMILES $=$ TRIPS $*$ MILES $* 2$ (first SPSS lab)
- Transform > Compute; name the Target Variable; write the formula; click OK
- Computed from dichotomies about specific shows - RSHOWS = SURVIVOR + BIGBRTHR + REALWRLD..
- Someone who watched all 8 , RSHOWS $=1+1+1+1+1+1+1+1=8$
- Someone who watched none, RSHOWS $=0+0+0+0+0+0+0+0=0$
- But if the values had been $1 \& 2$ (instead of 0\&1):
- RSHOWS $=$ SURVIVOR + BIGBRTHR + REALWRLD... -8
- Someone who watched all 8 , RSHOWS $=2+2+2+2+2+2+2+2-8=8$
- Someone who watched none, RSHOWS $=1+1+1+1+1+1+1+1-8=0$ SOC497 @ CSUN w/ Ellis Godard

Lab Exercise: Indices

```
- Use the abort.sav dataset from the website
- Look at frequency distributions and/or histograms of these seven measures:
- ABANY, ABDEFECT, ABHLTH, ABNOMORE, ABPOOR, ABRAPE, ABSINGLE
- Create an index (additive; equal weights)
- Submit a freq. table \& histogram of the index
Write a few sentences describing the shape, central tendency, and dispersion of this index
- Not just elementary report of data in phrases
- Use complete sentences
- Use the summary statistics to describe the sample!
```


[^0]: ****** *** ***** ******** * ******* ******

 ## Likert: The Holy Grail of Scales

 - Informally- any measure with 4 to 7 categories
 -Technically
 - an index of things w/ 5 or so categories
 - Series of measures w/ different criteria

