

SOC424 – Statistics w/ Dr. Ellis Godard
Lecture 20 of 27! ©

A Difference
of Aleans

Claims of Causality

• Most claims made about the world imply a causal relation of the form X → Y

• But it's probabilistic and tentative, not simply "if x then y"

• Consider a claim of the form "X explains Y"

• When X, Y is more likely

• Y is more likely if/when X

• Y happens more often under the condition of X

• Y is the "dependent variable"

• What's being predicted or explained

• It's values depend on the values of the other variable

• X is the "independent variable"

• Is the predictor or explainer

• The value of the other variable depends on what this one is SOC424 @ CSUN - Ellis Godard

Outline for Today...

Reminders

Causation & Dependence

Introduction to Bivariate Statistics

Review of a Means Test

Connect w/ Confidence Intervals

Difference of Means Test

Same Elements & Steps; Different test statistic & standard error

One example of the math & ideas

How to do it in SPSS

Independent Samples t-test w/ Levine's Test (that's the weird part!)

One example using SPSS

Simple Rules about Causality

If a causal relation exists, there must be

1. an association between two variables;

But not just that — "correlation is not causation"

2. appropriate time order: causes b4 effects;

but not just that — starting the car doesn't get me anywhere

3. Elimination of alternative explanations

e.g. possibility of a spurious relationship (more in Elaboration lecture)

SOC424 @ CSUN - Ellis Godard

Statistical Differences are Key

• It is impossible to establish statistically that the relation between variables is a causal relation.

• The best we can do is show that our sample is very different from what we would expect if there was no relationship – that is, that the data differs from the null.

• We want our data to be so different from the null, that the difference is too large to just be due to chance.

• We want to see a significant difference, which suggests that there's actually a difference in the population.

Bivariate Statistics

• Rest of semester is bivariate then multivariate relations

• Basic idea is the same: Is the difference between our data and the null large enough to think there really is a difference in the population?

• First step is comparing subgroups

• Eg look at Ybar for Males & Ybar for Females

• Next step is comparing groups

• One variable to separate the cases into groups

• That's the grouping variable, a categorical IV such as gender or race

• another variable to compare those groups

• That's the test variable, the DV

• May be proportional (next lecture) or a mean (today)

Is it just sampling error?

• There are lots of concerns about empirical claims

• Research Methods (e.g. SOC 497) addresses many of them

• Choices in methods, concerns about bias, etc.

• Data used to support an idea might be bad data – that's 497

• A key one is whether inferences are sound

• Claims about data might be exaggerated – that's SOC424

• Small differences don't matter, don't help us generalize

• Small differences might just be sampling error from random samples

• Sound inferences require clear differences (esp. big ones)

• An apparent association might be due to sampling variability

• Need to statistically assess (test) whether a difference is sufficiently large (i.e. far enough from no difference) to statistically justify an inference about a population

• If the difference is far from zero, it is statistically significant

Pre-Bivariate Statistics, cont'd

• Could do that using univariate statistics

• Will do in later lab:

• Data / Select Cases / If Condition Satisfied... for 1 group

• Get Univariate info (shape, center, dispersion)

• Repeat for a 2nd group

• Compare pt. estimates of central tendency & dispersion

• Could do that and make interval inferences

• Confidence intervals

• Calculate 2 confidence intervals for the mean, 1 for each group

• Compare them - do they overlap? If so, what's that mean?

• Hypothesis test

• Use a two-samples t-test to compare two means...

• Or could do that with a single inference...

Pre-Bivariate Statistics

• We have focused on univariate statistics

• Single variables, analyzed one at a time

• HWs 1 thru 6, Report 1, and most of Report 2

• Now, start thinking about a 2nd variable

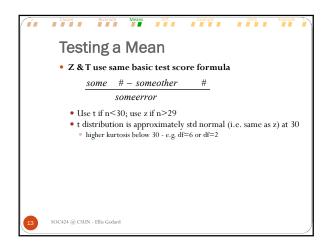
• Examine patterns of values in one variable, in relation to patterns of values on another variable, for each case

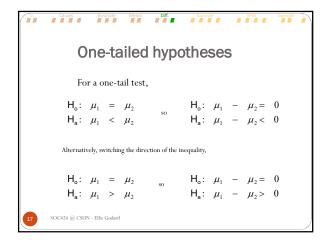
• For example, does the mean of __ differ if we compare two groups (__ and __) of some other variable?

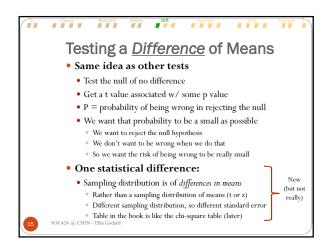
• Income for men vs women; GPA for Asian vs. Latinx

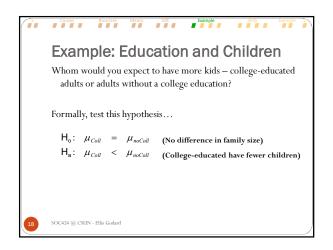
Test Statistic

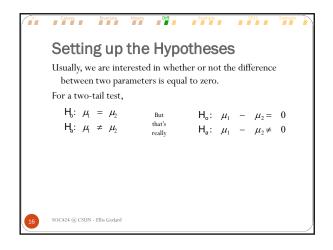
To test a hypothesis, we collect a sample, measure it's mean or proportion, and compute a test statistic.


All test statistics measure the same thing: how much observations differ from the (null) hypothesized value


All tests ask the same question:


is that difference large enough in the sample, that we expect it to be large in the population too?


or have we seen a difference (distance) that is small, negligible, possibly just a result of chance?


The way the test statistic is calculated depends on the sample size, the scale of measurement of our variables, and sometimes the shape of the population distribution — each statistic assumes something about each of those — but all have the same logic!

