

Parameters &
Estimation

Recoding Doesn't Fix Missings

• You might choose to recode in this class

• e.g. if you can't find an ordinal, create one from an interval

• But NEVER recode without a reason — & missing values isn't one!

• Recoding does not have anything to do with missing values

• Changing 99 to something else, doesn't tell SPSS to ignore 99

• The only way to tell SPSS to do that, is put 99 in the missing column

• That's what that column heading means, and why the column exists

• You should always check for missing values & consider whether recoding is needed — but those are no more related than if I tell you to brush your teach in the morning and eat a good breakfast

• Toothpaste is not breakfast, & breakfast doesn't clean your teeth

Outline for Today...

• Misc. Pieces

• Reminders about Recoding (x2)

• Definitions of Outliers

• Estimates, & Qualities of Estimates

• Distributions, Errors, & Hypotheses

• The Central Limit Theorem & Sampling

• Estimates, Again

• Lab

"Outlier" is Vague & Varies

• Extreme value? If lots, "straggly tails"?

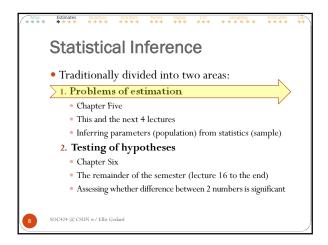
• But no single definition, so must define it

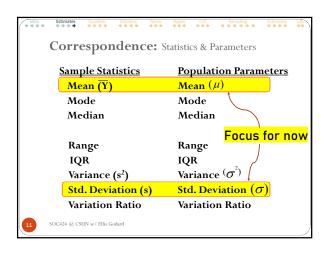
• One option: "any cases more than 1.5xIQR from mean"

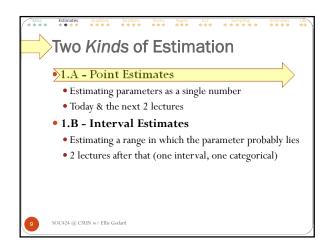
• IQR: the value of the 75th percentile minus value of the 25th

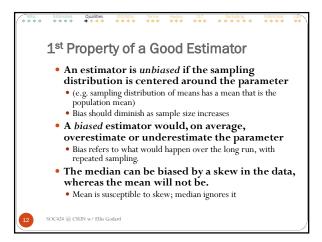
• If mean age = 30, 25th percentile = 25, & 75th percentile = 35:

• IQR = 75th - 25th, so 35 - 25 = 10

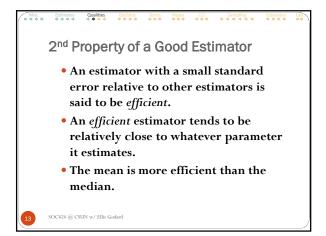

• 1.5x IQR = 1.5x IQR = 30 +/- (15) = 30-15 & 30+15 = 15 & 45


• Consider as outliers any values <15 or >45 (more than 1.5 IQR from Y)


• If there are many cases with those values, call that "scraggly tails"


• Another option (p. 54): more than 1.5xIQR from IQR

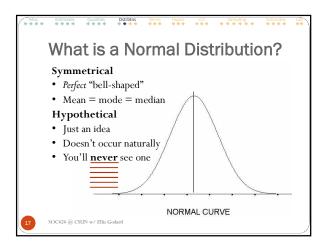
• 25th minus 1.5xIQR, and 75th plus 1.5xIQR



Point Estimates of Parameters

A sample statistic is used to predict the value of the corresponding parameter (esp. a mean).

That prediction is associated with a level of confidence - how confident we are that the sample statistic is a good estimate of the population parameter.



For Our Purposes ...

• The sample mean \(\tilde{Y}\) is both unbiased and generally quite efficient estimator of the population mean

and

• the sample standard deviation s is an unbiased and quite efficient estimator of the population variance.

Alternatives to the Sample Mean

One/some arbitrary observations

"Person-in-the-street sample"

Sample median or mode

"Trimmed mean"

Delete highest & lowest measurements before averaging (& divide by the smaller sample size)

EMPIRICAL RULE in words...

If the distribution of a variable (as illustrated in its histogram) is normally distributed, then:

• About 68 percent (68.26) of the measurements lie within one standard deviation from the mean (i.e. between Y - s and Y + s);

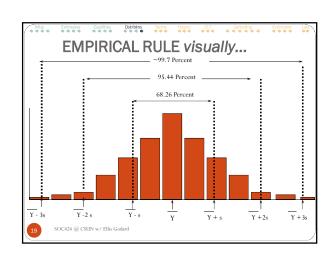
• About 95 percent (95.44) of the measurements lie two standard deviations from the mean;

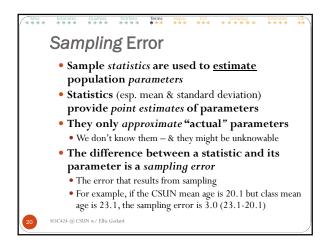
• Almost all measurements (99.7%) lie within three standard deviations of the mean.

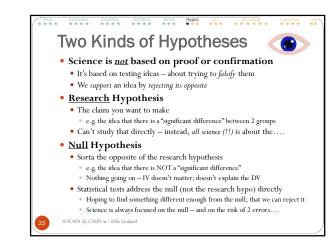
Distributions

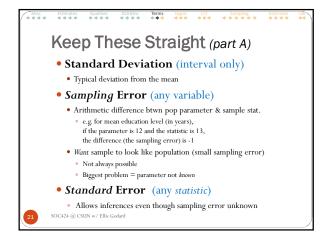
Population Distribution (real...ish?)

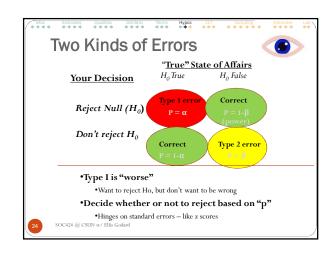
"Real" arrangement of a variable's data, in the population being studied.

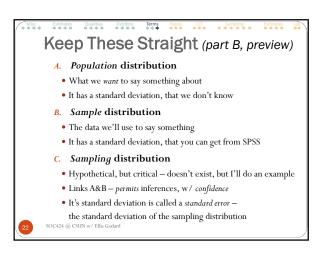

Sample Distribution (real, observed)

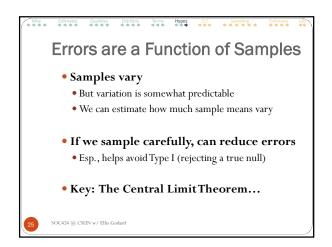

Arrangement (as illustrated in a histogram) of the data actually collected or observed

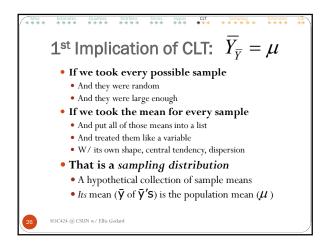

Normal Distribution (unreal, hypothetical)

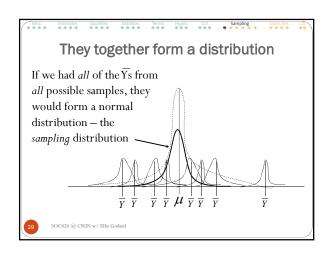

An arrangement w/ particular shape characteristics (similar to a "bell curve", but much more specific)

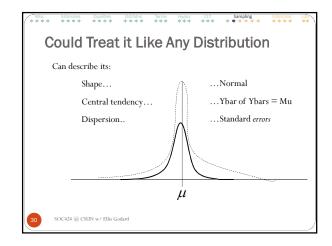

Now a 4th: Sampling Distribution (completely hypothetical)

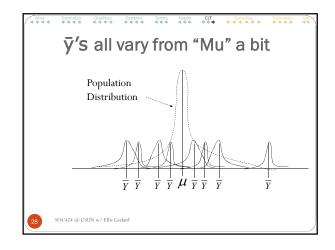


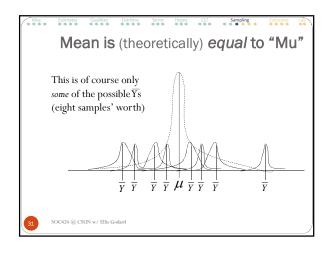


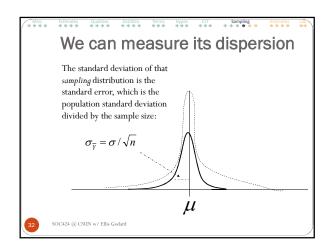


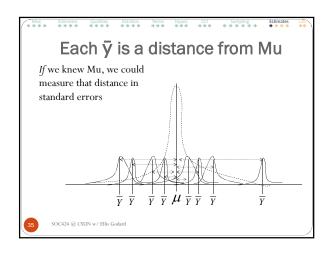


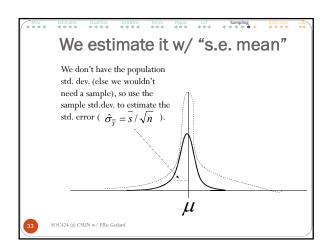


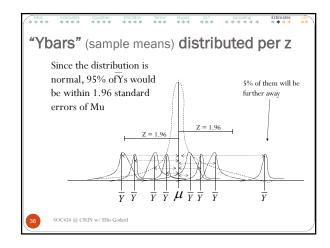


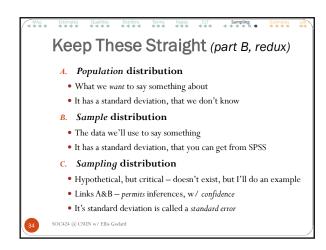


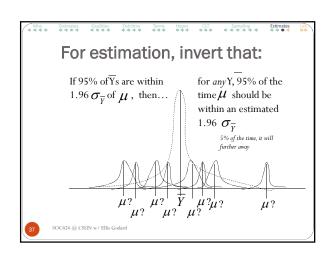












CLT Inverted (Pts to Intervals)

If a sample is taken randomly and if it is sufficiently large...

• An estimated 95% of the sample means will fall within 1.96 standard errors – that is, the population mean will be within 1.96 standard errors of the sample means fall within 2.57 standard errors – that is, the population mean will be within 2.57 standard errors – that is, the population mean will be within 2.57 standard errors – that is, the population mean will be within 2.57 standard errors – that is, the population mean will be the time

Recent Lab: Music Index

Practical: Follow directions

All of the steps (don't skip #1)

In order (don't try to do #4 before #1)

All of the instructions (e.g. freqs for "all your 13 new variables")

Use the data (esp. stats) to tell a story

Empirical: Diversity of tastes varies

Original variables: measure whether respondent likes each genre

Recoded variables: measure whether respondents like each

Some were most popular, some least

Index measures how many (not how much) genres each R likes

Diversity, not intensity

Most common (& median) is 6 of 12 — but mean higher (6.3)

Next Lab: Estimation

Comparing PAEDUC & MAEDUC

Start w/ frequencies, histograms, stats (center & spread)

1. Which is more dispersed?

Use appropriate statistical terms and statistics!

2. Within what range (of years of education) do we estimate that 68.26% of the cases are for each variable?

Assume that the empirical rule applies.

3. Are there outliers / scraggly tails?

Use the first definition from this lecture (in a yellow box – slide #7)

4. What are the two sampling errors?

Assume that the population mean for both is 10 years.