Introduction to Social Statistics Summary of Estimation and Hypothesis Testing #### 1. Point and Interval Estimation | Parameter | Point
Estimates | Estimated Standard
Error | 100(1-a)% C.I.
(Large Sample) | |---|-----------------------------------|--|---| | Mean μ | \overline{Y} | $\hat{\boldsymbol{S}}_{\overline{Y}} = \frac{s}{\sqrt{n}}$ | \overline{Y} $\pm z_{a/2} \hat{s}_{\overline{Y}}$ | | Proportion π | p = X/n | $\hat{\boldsymbol{S}}_{p} = \hat{\boldsymbol{S}}_{\hat{\boldsymbol{p}}} = \sqrt{\frac{p(1 - p)}{n}}$ | $p \pm z_{a/2} \hat{s}_p$ | | Difference of Means $(\mu_2 - \mu_1)$ | $\overline{Y}_2 - \overline{Y}_1$ | $\hat{\mathbf{S}}_{\frac{1}{Y_2}} - \frac{1}{Y_1} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ | not covered yet | | Difference of Proportions $(\pi_2 - \pi_1)$ | $p_2 - p_1$ | $\hat{\mathbf{S}}_{p_2 - p_1} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$ | not covered yet | ### 2. Hypothesis Testing ### A. Univariate Tests for Large Samples | Steps | Mean | Proportion | | | |-------------------|--|---|--|--| | 1. Assumptions | Random Sample, Interval Variable,
Large Sample | Random Sample, Categorical Variable, Large Sample | | | | 2. Hypotheses | H_0 : μ = a
H_a : $\mu \neq a$ or
H_a : $\mu < a$ or
H_a : $\mu > a$ | H_0 : π = a
H_a : π \neq a or
H_a : π < a or
H_a : π > a | | | | 3. Test Statistic | $z = \frac{\overline{Y} - a}{\hat{s}_{\overline{Y}}}$ | $z = \frac{p - a}{\hat{\mathbf{s}}_p}$ | | | | 4. p-value | Use Table A: If H _a is a two sided test give area in both tails; if H _a is one-sided, give area from one-tail. | | | | | 5. Conclusion | Reject H_0 (accept H_a), if p-value is below some "conventional" level of significance (usually .05 in the social sciences). | | | | ## **B. Bivariate Tests for Large Samples** | Steps | Difference of Means | Difference of Proportions | | | |-------------------|--|--|--|--| | 1. Assumptions | Two Interval Variables, Large Independent Samples | Two Categorical Variables, Large Independent Samples | | | | 2. Hypotheses | H_0 : $\mu_1 = \mu_2$ | H_0 : $\pi_1 = \pi_2$ | | | | | H_a : $\mu_1 \neq \mu_2$ or | H_a : $\pi_1 \neq \pi_2$ or | | | | | H_a : $\mu_1 < \mu_2$ or | H_a : $\pi_1 < \pi_2$ or | | | | | $H_a: \mu_1 > \mu_2$ | $H_a: \pi_1 > \pi_2$ | | | | 3. Test Statistic | $z = \frac{\overline{Y_2} - \overline{Y_1}}{\hat{\mathbf{s}}_{\overline{Y_2} - \overline{Y_1}}}$ | $z = \frac{p_2 - p_1}{\hat{\mathbf{S}}_{p_2 - p_1}}$ | | | | 4. p-value | Use Table A: If H_a is a two sided test give area from one-tail. | give area in both tails; if H _a is one-sided, | | | | 5. Conclusion | Reject H ₀ (accept H _a), if p-value is belo (usually .05 in the social sciences). | w some "conventional" level of significance | | |