Brief Guide to Crosstabs (Crosstabulations and Chi-Square) in SPSS
(Note that these screenshots are from verson 9.0, and that you use version 10.0, which is pretty close.)
$1^{\text {st }}$ choose ANALYZE-DESCRIPTIVES-CROSSTABAS:

Double-click (or single-click and then use the arrow) to select variables from the list on the left, identifying the dependent variable (for Rows) and the independent variable (for columns). DON'T CLICK "OK" YET!

First, select "Statistics" and make sure that the box for "Chi-square" is selected. Then click "Continue"...

Also, click "Cells" \& make sure that the box by "Column" under "Percentages" is checked, then click "Continue":

In the output, each cell should have the cell count (the raw frequency, or number, of cases that fall in the intersection of
that row and that column) and the column percentage (of all the cases in that column, the percent that are in that cell).

In this example, we can make several summaries.
First, an overall summary of the table: Males (Gender=2) are more likely than females (Gender=1) to watch zero reality shows, but there are no males who watch more than two, whereas 12% of the females watch more than two.
Second, the modal frequencies (the highest percentages in each row) sort of follow a main diagonal, from males and no reality shows to females and nine. Third, we can treat females as the reference category and compare percentages by subtracting males from them - for example, males are 7.8% more likely to not watch any (that's $44.4 \%-36.6 \%$), and 13.8% more likely to watch one. Fourth, we can compare columns to the marginals (the row totals) by subtracting one from the other, such as saying that females are more than 2% less likely to watch one reality show $(21.2 \%-19.5 \%)$ than the average viewer, but also almost 2% more likely to watch $t w o$ reality shows $(9.7 \%-8.0 \%)$. In all of these ways, there do seem to be some differences but they are rather small, and probably not enough to constitute a clear dependent relationship.

RSHOWS * GENDER Crosstabulation

			GENDER		Total
			1.00	2.00	
RSHOWS	. 00	Count	15	4	19
		\% within GENDER	36.6\%	44.4\%	38.0\%
	1.00	Count	8	3	11
		\% within GENDER	19.5\%	33.3\%	22.0\%
	2.00	Count	14	2	16
		\% within GENDER	34.1\%	22.2\%	32.0\%
	3.00	Count	3		3
		\% within GENDER	7.3\%		6.0\%
	4.00	Count	1		1
		\% within GENDER	2.4\%		2.0\%
Total		Count	41	9	50
		\% within GENDER	100.0\%	100.0\%	100.0\%

Finally, the table below provides the summary statistic info. You want the "Pearson Chi-Square" row. The Chi-Square value is under "Value", and the p-value is under "Asymp. Sig". Here, the observed chi-square statistic is 1.967 , which is associated with a 74.2% risk of being wrong in rejecting the null hypothesis. This is too great a risk (far exceeding our standard of 5% risk), so we are unable to reject the null. We therefore don't find support for the research hypothesis, and cannot conclude that males and females watch numbers of reality shows.

Chi-Square Tests

	Value	df	ASymin. Six. (2-sided)
Pearson Chi-Square	$1.967{ }^{\text {a }}$	4	. 742
Likelihoodratio	2.635	4	. 621
Linear-by-Linear Association	1.139	1	.286
N of Valid Cases	50		

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .18 .

