Steps in Hypothesis Testing

A. Univariate Tests for Large Samples

	Mean	Proportion
1. Assumptions	Random Sample, Interval Variable, Large Sample	Random Sample, Categorical Variable, Large Sample
2. Hypotheses	H_0 : μ = a H_a : $\mu \neq a$ or H_a : $\mu < a$ or H_a : $\mu > a$	H_0 : π = a H_a : π \neq a or H_a : π < a or H_a : π > a
3. Test Statistic	$z = \frac{\overline{Y} - a}{\hat{\boldsymbol{s}}_{\overline{Y}}}$	$z = \frac{p - a}{\hat{\mathbf{s}}_p}$
4. p-value	Use Table A: If $H_{\rm a}$ is a two sided test give area in both tails; if $H_{\rm a}$ is one-sided, give area from one-tail.	
5. Conclusion	Reject H_0 (accept H_a), if p-value is below some "conventional" level of significance (usually .05 in the social sciences).	

B. Bivariate Tests for Large Samples Difference of Means

Difference of Proportions

		•
1. Assumptions	Two Interval Variables, Large Independent Samples	Two Categorical Variables, Large Independent Samples
2. Hypotheses	H_0 : $\mu_1 = \mu_2$	H_0 : $\pi_1 = \pi_2$
	H_a : $\mu_1 \neq \mu_2$ or H_a : $\mu_1 < \mu_2$ or H_a : $\mu_1 > \mu_2$	H_a : $\pi_1 \neq \pi_2$ or H_a : $\pi_1 < \pi_2$ or H_a : $\pi_1 > \pi_2$
3. Test Statistic	$z = \frac{\overline{Y_2} - \overline{Y_1}}{\hat{\mathbf{s}}_{\overline{Y_2} - \overline{Y_1}}}$	$z = \frac{p_2 - p_1}{\hat{\mathbf{S}}_{p_2 - p_1}}$
4. p-value	Use Table A: If H_a is a two sided test give area in both tails; if H_a is one-sided, give area from one-tail.	
5. Conclusion	Reject H_0 (accept H_a), if p-value is below some "conventional" level of significance (usually .05 in the social sciences).	