Continents

- If we remove the ocean water......
- What features do we see ?
- **Continents** are the dominant feature
 - surface area ~1/3
 - flat tops
 - elevation close to sealevel
 - steep sides (not gradually tapered)

- **Seafloor**
 - flat
 - except for *spreading centers*
 - oceanic plateau(x), flat topped

- What causes the relief between the two types of plates ?
Continents and Seafloor

- **Continental crust**
 - 35-40 km thick
 - felsic
 - density \(\approx 2700 \text{ kg/m}^3 \)

- **Oceanic crust**
 - 6-7 km thick
 - mafic
 - density \(\approx 2950 \text{ kg/m}^3 \)

- **Mantle material**
 - peridotite
 - density \(\approx 3300 \text{ kg/m}^3 \)
Southern California Coast: Continental Shelf

- Continental shelf is cut by submarine canyons that channel sediments to the deep ocean.
- What keeps continental edges so steep?
Mountain Belts

- Mountain belts are chains of mountain ranges 1000s of km long
 - Located along the edges of continents

- As mountains grow higher and steeper, erosion rates increase (from running water and ice)
• Ancient mountain belts have eroded nearly flat to form the stable core of a continent (craton or shield)

• Every continental plate has a central, old, craton.
Growth of Continents

- Continents grow larger as mountain belts evolve along their convergent margins

- New accreted terranes can be added to older cratons with each episode of convergence

- Tectonic subduction participates in growth and shape of continents
Erosion rates
Tectonics
Isostacy (gravitational collapse)
ALL play a role in shaping the continents into what we see today.
(mountains rise, but don't stay high too long)
Seafloor Bathymetry

• Seafloor plates are 100-10,000 km wide.
• Seafloor plates don't have clear edges or breaks
• Features: *spreading ridges* (2-3 km below sea level)
• Features: *submarine plateau(x)*
 - ridge and plateaus have larger crustal thickness
 - some have continental “type” crust, most are basaltic

Are there mountains on the seafloor?
Ridge migration is shown to have little effect on upwelling and melting rates.

Toomey et al., 1998; Conder et al., 2001
Southern Cross Seamount
(south Pacific)

Many seamount chains oriented perpendicular to spreading display regular spacing (Bach smts ~30 km).
Seamount Chains in the South Pacific

Sojourn Ridge, Hotu Matua, Pukapuka Ridge, spacing = 200 km

Rano Rahi smts spacing = 20 km
Seamounts

- Seamounts can stand ~1/2 the height of Mt. Everest
- Some are linear (some not)
- Some have age progressive volcanism (some don't)
- Some start or stop at plate boundaries
- Some start and stop mid-plate
- Most seamounts occur far from plate boundaries
- What is responsible for producing them?

- Mantle plumes (hot spots)
- Mantle plumes probably don't create all seamounts!
- Scientists must think of other geodynamic models
- Can you think of any?
- Outer-rise of subduction “bend”
- Asthenospheric flow
Models for Intraplate Seamount Chains

(a) SMALL SCALE CONVECTION
(b) EXTENSION

(c) THERMAL CONTRACTION

(d) VISCIOUS FINGERING

High µ depleted asthenos
Low µ
GLIMPSE Experiment
(Gravity Lineations and Intraplate Melting Petrology and Seismic Expedition)

COOK16/Melville November, 2001
VANC04/Melville November, 2002

Brown University
Lamont Doherty Observatory
Oregon State University
Low viscosity fluid displaces high viscosity fluid by fingering instabilities. (Hill, 1952; Saffman and Taylor, 1958)

Governing Equations for Saffman-Taylor Instabilities

An applied pressure gradient is described by Darcy flow

\[\frac{\Delta P}{\Delta x} = \rho g - \mu U/b^2 \]

For two component flow:

\[P_1 = P_0 + \rho_1 g \delta x - \mu_1 U \delta x/b^2 \]
\[P_2 = P_0 + \rho_2 g \delta x - \mu_2 U \delta x/b^2 \]

\[\Delta P = [(\rho_1 - \rho_2) g \delta x - (\mu_1 - \mu_2) U / b^2] \delta x \]

Density variations are neglected for horizontal flow.
\[\delta P = (\mu_1 - \mu_2)U \frac{\delta x}{b^2} \]

The interface is unstable for \(\mu_1 / \mu_2 > 1 \)
Experimental Apparatus

* Working fluid is corn syrup diluted with water.
* Viscosity ratio μ_1/μ_2 ranges from 5 to 300.
* Experimental time ranges from 2 min – 5 hr.
* The diffusion coeff is small, $1 \times 10^{(-10)} \text{ m}^2/\text{s}$

Variations in plate spacing, injection rate, and viscosity ratio are considered.
Radial Flow Between Stationary Plates

* The pattern of fingering is established by perturbations at early times.
* Growth of instabilities occurs by spreading, shielding, and tip splitting.
* Fingering wavelength is controlled primarily by plate spacing.

Viscosity ratio = 200 (200 / 1 Pas)
Rate of mass flux

<table>
<thead>
<tr>
<th></th>
<th>Rate of mass flux</th>
<th>Plate velocity</th>
<th>Mass flux / (V_{plate} \times b \times R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>0.50 g/s</td>
<td>0.04 cm/s</td>
<td>30 - 300</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper mantle</td>
<td>3.3 Mg/s</td>
<td>10 cm/y</td>
<td>0.01 – 0.2</td>
</tr>
</tbody>
</table>

(Marquesas, Tahiti (Sleep, 1990))
Mobile Upper Boundary

* Fingers align with shear and travel both downstream and upstream.
* Fingers initially growing perpendicular to shear are damped out.
* Asthenospheric flow may be a model for formation of linear seamounts.

Viscosity ratio = 200

movie
Broad Long Wavelength Topographic Swells

- Hawaii and east Africa are examples of regions which exhibit large scale topographic swells
- Rising *mantle plumes* are suggested as the cause
Global Free Air Gravity Map

Smith and Sandwell
Gravity

• Is the value of gravity at the Earth' surface the same everywhere?

• What causes any differences?

 • Gravity varies by about 0.05% over the surface of the Earth

 • Causes are due to differences in density within the Earth's interior

 • Continental roots
 • Subducting slabs
 • Convection
 • Upwelling plumes
Gravity

• How is gravity measured?

• Gravimeters on land
• Gravimeter towed behind ships
• Satellite orbits are perturbed
• Satellites Altimetry use radar reflections off of sea surface

• Which are the highest resolution?
Gravity

[Graph showing the gravity (mgal) with high density indicated by a brown circle]
Gravity

- Elevation, at greater distance from the Earth's center
- Will have lower gravitational attraction
Gravity

- Gravity is also sensitive to the **excess mass** of the mountain root.
- The combined attraction is somewhere in between.
- It is important to consider **gravity** simultaneously with **topography**.
Do these map have similar highs and lows everywhere?
Continents

- If we remove the ocean water......
- What features do we see ?
- **Continents** are the dominant feature
 - surface area ~1/3
 - flat tops
 - elevation close to sealevel
 - steep sides (not gradually tapered)

- **Seafloor**
 - flat
 - except for *spreading centers*
 - oceanic plateau(x), flat topped

- What causes the relief between the two types of plates ?
Continents and Seafloor

- **Continental crust**
 - 35-40 km thick
 - felsic
 - density $\approx 2700 \text{ kg/m}^3$

- **Oceanic crust**
 - 6-7 km thick
 - mafic
 - density $\approx 2950 \text{ kg/m}^3$

- **Mantle material**
 - peridotite
 - density $\approx 3300 \text{ kg/m}^3$
Seafloor Bathymetry

- Seafloor plates are 100-10,000 km wide.
- Seafloor plates don't have clear edges or breaks.
- Features: *spreading ridges* (2-3 km below sea level)
- Features: *submarine plateau(s)*
 - ridge and plateaus have larger crustal thickness
 - some have continental “type” crust, most are basaltic

Are there mountains on the seafloor?
Seamounts

- Seamounts can stand ~1/2 the height of Mt. Everest
- Some are linear (some not)
- Some have age progressive volcanism (some don't)
- Some start or stop at plate boundaries
- Some start and stop mid-plate
- Most seamounts occur far from plate boundaries
- What is responsible for producing them?
 - Mantle plumes (hot spots)
 - Mantle plumes probably don't create all seamounts!
 - Scientists must think of other geodynamic models
 - Can you think of any?
 - Outer-rise of subduction “bend”
 - Asthenospheric flow
Models for Intraplate Seamount Chains

(a) SMALL SCALE CONVECTION
(b) EXTENSION
(c) THERMAL CONTRACTION
(d) VISCOUS FINGERING

Lithosphere
Asthenosphere
High µ depleted asthenos
Low µ lithosphere
Hawaii and east Africa are examples of regions which exhibit large scale topographic swells

Rising *mantle plumes* are suggested as the cause
Gravity

- Is the value of gravity at the Earth's surface the same everywhere?
- What causes any differences?
 - Gravity varies by about 0.05% over the surface of the Earth
 - Causes are due to differences in density within the Earth's interior
 - Continental roots
 - Subducting slabs
 - Convection
 - Upwelling plumes
Gravity

- How is gravity measured?
 - Gravimeters on land
 - Gravimeter towed behind ships
 - Satellite orbits are perturbed
 - Satellites Altimetry use radar reflections off of sea surface

- Which are the highest resolution?
Gravity

[Graph showing gravity with high density indicated by a circle]

Gravity (mgal)

0

-4

high density
Gravity

Elevation, at greater distance from the Earth's center
Will have lower gravitational attraction
Gravity is also sensitive to the **excess mass** of the mountain root. The combined attraction is somewhere in between. It is important to consider gravity simultaneously with topography.
Comparing Gravity and Topography

- Do these maps have similar highs and lows everywhere?