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A BBGKY HIERARCHY FOR THE EXTENDED KINETIC THEORY 
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The extended Boltzmann equation, whtch considers the possibility of creation and annihila- 
tion of particles by collision events, is derived from a generahzed Liouville equation through 
the construction of the corresponding BBGKY hierarchy. This derivation requires a generah- 
zation of the concept of probability density and reduced distribution functions for the case in 
which the number of parttcles is not preserved. This extended Boltzmann equation is 
compared with previously proposed models. 

1. Introduction 

The Boltzmann equation describes the evolution of a dilute gas whose 
molecules interact through binary collisions. It plays an important role in the 
study of a variety of physical systems, for example in electron transport in 
solids, radiative processes and thermonuclear fusion [1]. Recently, this kinetic 
equation has been extended to consider the possibility of elementary processes 
in which particles can be created or annihilated. The presence of a background 
gas interacting with the test particles has also been considered [2, 3]. Since 
then, a considerable amount of work has been done in order to understand 
how those processes modify the relaxation behaviour of the gaseous system. 
Polynomial series [4] and hydrodynamical apprc~ache~ [5, 6], as well as sim- 
plified gas models [7, 8]. have been successfully used to find the characteristic 
features of this extended kinetic theory. 

For a single species system, whose distribution function f(x, v, t) depends on 
the position x, the velocity v and the time t, the generalized Boltzmann 
equation reads [2] 

[Ot+v'v' +F'v"] f(x'v't)=B[f'f]+ 

+ f do' dw' v)f(v')f(w') 
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+ f dr '  dw' or~(v'w'--> v) f (v ' )g(w' )  

(1 .1)  

In eq. (1.1) F is an external conservative force and m is the mass of the test 
particles. The bilinear operator  B[ f, f]  describes the elastic collisions between 
test particles and reads 

B[ f, f l  = J d w d v '  dw'  f(v')f(,c')- f(v)f()¢)l. (1.2) 

where o-(vw--)v 'w')  is the transition frequency for the binary collision (v, 
w)--~(v', w'). Spatial and temporal variables have been eliminated to clarify 
the notation. The elastic interaction with the background gas with a previously 
known distribution function denoted by g(x, v, t) is described by the operator 
L[f] ,  whose form is analogous to eq. (1.2), replacing f(w) and f (w')  by g(w) 
and g(w ' ) ,  respectively. 

Creation and removal processes are described by the last four terms of cq. 
(1.1). They respectively represent: 

(1) Creation of a particle with velocity v bv interaction between two test 
particles with velocities v '  and w'. characterized by a tran.,,ition frequency 
(rC(v' w ' - - ,  v) .  

(2) Creation ol a particle with velocity v by in.).eractlon bct~vcen a te,~t 
particle with velocity v'  and a background part)clc with ,,'eioci~ w'. character- 
ized by a transition frequency (r~(v'w'--> v). 

(3) Removal of a test particle with velocity v by interaction with a test 
particle of velocity w, characterized by a transition frequency nr~(vw). 

(4) Removal of a particle with velocity v by interaction with a background 
t r 

particle of velocity w, characterized by a transition frequency o'B(v)~). 
As done by Boltzmann in 1872, when he proposed the kinetic equation, the 

creation and removal terms have been introduced ad hoc [2]. The proposed 
form for these terms has been based on heuristic arguments, according to the 
temporal evolution that the corresponding processes are expected to determine 
in the distribution function. A justification for that form, based on more 
fundamental arguments, has not been developed up to this moment. 

For the original Boltzmann equation, in which only elastic binary collisions 
are considered, a justification from elementary mechanical laws was introduced 
about 1940, and it is a usual subject in textbooks on nonequilibrium statistical 
mechanics [9]. This justification is based on the Liouville equation, which 
governs the evolution of the probability density pN(X) • • • ,'<,,, t) for a system of 
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N particles, with coordinates xj ,  . . . .  x N in the phase space at time t; x , - -  

(x~, p,). If ~/'N is the Hamiltonian function of the system, the Liouville equation 
reads 

o,p,  = PNi, (1.3) 

where [, ] indicates the Poisson brackets. The derivation of the Boltzmann 
equation requires a definition for the distribution function from the density PN" 
More generally, the reduced s-particle distribution function is defined as the 
probability of finding s given particles with coordinates xt . . . . .  x~ (s < N) at 
time t: 

N! f f , ( x  I . . .  x~, t ) -  ( IV- -  s)! dxs+t " '" dxN PN(Xl  " ' "  xN '  t ) .  (1.4) 

The numerical factor in the definition of ~ has been taken according to the 
following normalization for the probability density [10]: 

f d x l  " " • d X N  ON = 1 , (1.5) 

which implies f~ ( t )  = 1. Furthermore, p N ( X ~ . . .  X N, t) being symmetric in its 
arguments, this symmetry is also satisfied by the reduced distribution functions. 
Taking the Hamiltonian describing only pair interactions, i.e., 

N N 

~(N(X, . . . XN)= (2m) -L ~'~ [p~ + V ( x , ) ]  + ~z~ V , , (x , ,  x , )  , 
t =  L t < ]  

(1.6) 

the Liouviile equation implies the following evolution laws for the reduced 
distribution functions: 

0,fs=IY(~, f~]+ dxs+, V,s~l, f~+l • (1.7) 

The binary . . . . . .  interaction between particles couplet J~f with .... J~.i f . . . . . . . . . . .  The re~uitlng 
chain of equations (1.7) is known as the BBGKY hierarchy [10]. A further 
neglect of the pair correlations in the computation of f 2 ( x t x  2, t ) ,  i.e., the 
Boltzmann S t o s s z a h l  a n s a t z ,  

f , ( x , x  z,  t)  = f l ( x , ,  t)ft (x z, t ) ,  (1.8) 

enables the formulation of a nonlinear kinetic equation for the one-particle 
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distribution function f~(x~,  t) ,  which is precisely the Boltzmann equation [10]: 

D,  f l ( x  ) = f d x '  d x "  d y  o'(xx'.--~ x " y ) [ f l ( x " ) f l ( y  ) - L ( x ) L ( x ' ) l ,  (1.9) 

with 

D, = 0, + v.V~ + F .V v . 
m 

The aim of this paper is to derive the BBGKY hierarchy when creation and 
annihilation processes are allowed. It implies the consideration of a system 
whose particle number is not fixed. The definition of the probability density 
and the reduced distribution functions must be accordingly modified, and the 
effects of such processes have to be introduced at the level of the Liouville 
equation. From that point,  evolution equations for the reduced distributions 
will be obtained up to the one-particle function f ( x ,  v ,  t).  The hypothesis of 
molecular chaos, eq. (1.8), will be applied to derive the Boltzmann equation, 
to be compared with the previously proposed model, eq. (1.1). 

2. Extended densities and Liouville equation 

The first problem which we must deal with in making fundamental of the 
extended kinetic theory is the violation of the particle number conservation. 
Since N must be considered as a variable of the system, it is not possible to 
describe its evolution by means of a function p , , ~ ( X l . . ,  x N, t) with a fixed 
number of variables. Instead, we introduce a density vector 

p = [po(t) ,  p l ( x , ,  t ) ,  P2(XtX2, t) ,  P3(X,X2X3, t) . . . .  1, (2.1) 

where p , , ( x ~ . . ,  x, , ,  t) is the probability density of finding n particles with 
coordinates x ~ , . . . ,  x n at time t. These functions are required to be symmetric 
in their coordinates and to satisfy the conservation of the total probability, 

P°(t)  + ~=t d x  l . . . dx,,  p, ,(x l . . . x , , ,  t) = l . (2.2) 

This normalization generalizes eq. (1.5). 
Regarding the reduced s-particle distribution function, we want to preserve 

its definition as the probability of finding s particles with coordinates xt . . . . .  x~ 
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at time t. According to the definition of the density vector, we write 

L ( x ~  . . . x , ,  t )  = s ! o , , ( x ~  . . .  x ~ ,  t )  

+ ( n - s ) !  dx~+ 
n = 5 + ]  

,=o r! 

. . .  dx ,  p,(x~ . . .  x , ,  t) 

dx~+ I . .  • dx~. r p~+r(x 1 . . .  x~+,) .  (2.3) 

The last line in eq. (2.3) has been introduced to simplify the notation. The 
reduced distribution functions satisfy the symmetry in their variables and, 
because of eq. (2.2), f~(t) = 1. Up to here, the identification of this generalized 
formulation with the original conservative problem is straightforward. 

In order to introduce the extended Liouville equation, we must evaluate the 
effects of the creation and removal processes at a microscopic level on the 
evolution of the probability density. Unfortunately, there is not a purely 
classical Hamiitonian description for systems in which particles are generated 
or annihilated. Therefore, the evolution equation for the density cannot be 
proposed as a direct extension of eq. (1.3). In fact, the terms which describe 
nonconservative processes must be explicitly derived from the dynamics of the 
single collision which takes place during each process. 

The evolution of each density element O,, depends, in the first place, on the 
elastic interactions described by the Hamiitonian ~,,. The contribution of 
creation or annihilation events will add linear terms, in the form of operators 
acting on p,,_l and p,, . l ,  respectively, supposing that in each event only one 
particle is generated or destroyed. In general, the extended Liouville equation 
can be written as 

~,o,, = [a°,,, o,1 + ( a , o , , ) , ,  (2.4) 

where (c~,O,,)t~ describes the effects of nonconservative events. This term must 
be symmetric in its arguments. Furthermore, since the Hamiltonian term 
preserves the particle number, the conservation of probability implies 

f dx t  . . . dx, ,  (OrP, , )R= ( d x ,  . . . dx , ,_l(~) ,p , ,_ , )p.  
J 

+ f dx ,  . . .  dx,,~j(d,p,,_~,) R . (2.5) 

We shall explicitly consider here the four nonconservative events included in 
eq. (1.I):  
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a) Removal of a particle with coordinates x by interaction with the back- 
ground ga~. This process can be characterized by a transition frcqucncy <5(x). 
including the information about the distribution function of the background. It 
contributes to (/J,#,,)R with a gain term which depends lineary on O,,+;. 
Accordingly, a negative term must be added to take into account the loss of 
probability towards O,,-~ by annihilation of a particle. Symmetrizing these 
terms in their arguments we obtain 

(a,p,,), 
, ' -  I 

(2.6) 

which indeed satisfy eq. (2.5). Eq. (2.6) is valid for i1 t> 1: since no removal can 
occur in the absence of particles, the loss term must be eliminated for n = 0. 

b) Creation of a particle with coordinates x by collision of a test particle in 
x'  with the background. The colliding particle is scattered to coordinates x". 
This process is characterized by a transition frequency o-_,(x'---~ xx"), which is a 
symmetric function in the pair of outgoing particles (x. x"). This transition 
probability also includes the information about the background gas. The 
positive gain term in (0,p,,)R depends now on P,,-i- Symmctrizat!on of thc 
corresponding variables give the following terms, accomplishing thc conserva- 
tion of probability, 

1 ~,  fdxo-,(x---)x,x,)p,, t(x, ....f,.f,. x,.x) (i~,p,,)._ n ,.~ 

- p,,(x, . . . x , , )  f dx dx' 
t = l  

(2.7) 

The prime on the summation sign indicates that i #-j. The hatted coordinates 
denotc that those variables are missing in the arguments of P,,-I. For n = O, 

p,,)_, =0.  
c) Removal of a particle with coordinates x, by interaction with another 

particle in x', scattered by the collision to x". It is characterized by a transition 
£ . . . . .  ~ t "  t 

0"~ I XX v v  , ,  , , . . , . .  -._ ffcque., .y --> x"), ,,,h;~-h "S symmetric in the coordinates of the ingoing 
particles (x. x'). Since it involves an annihilation, this process contributes to 
(c3,p,,)R from p, + 1, and the corresponding gain and loss terms read 

(c),p,) 3 = ( n  + 1) ~ f dx dx' o'3(xx'--> x , ) p , + , ( x l . . . . f ,  . . . .  x',,xx') 
I = 1  

- o , ( x , . . ,  x,,) dx x ) .  (2.S) 
I1  
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They also satisfy the probability conservation, eq. (2.5). Since two particles are 
required for the event to be produced, the loss term vanishes for n = 0 and 
n = 1; the gain term is also zero for n = 0. 

d) Finally, creation of a particle with coordinates .C' by interaction of a pair 
in (x, y) which scatters to (x', y ' ) .  Its probability is given by a collision 
frequency o r 4 ( x y ' - * x ' y ' x " ) ,  symmetric in the sets of variables (x, y) and 
( x ' ,  y ' ,  x " ) .  The gain term depends on p,_ ~, and symmetrization and conserva- 
tion of probability determine 

,f  1 ~ ,  d x d x '  t r 4 ( x x ' - - , x , x , x ~ ) p , _ l ( x  I .~,.~,.~ . x , , x x ' )  . . . . . 
( O t P " ) 4  = n , . t ,k  '~ 

- p , ( x  I . . .  x , )  d x  d x '  d x "  t r a ( x , x  , ~ x x ' x " ) .  
t . I  

(2.9) 

The prime on the triple summation indicates that i # j ~ k. Now, the gain term 
vanishes for n = 0, 1, 2 and the loss term does the same for n = 0, 1. 

Once having the explicit form of the temporal evolution that nonconserva- 
tive processes determine for the density vector, we can proceed to study the 
effects of that evolution on the equations for the reduced distribution func- 
tions. In the next section, we develop the BBGKY hierarchy for the extended 
Liouville equation (2.4), when the described nonconservative events are taken 
into account. Then, the corresponding Boltzmann equations will be obtained to 
describe the evolution of the one-particle distribution function f ( x .  v ,  t ) .  

3. Extended BBGKY hierarchy and the Boitzmann equation 

The evolution of the reduced distribution functions can be straightforwardly 
analyzed from their definition, eq. (2.3), and the dynamical law for the density 
vector, eq. (2.4). It is given by 

,-,x . .  , ,  = (s + r)'. f 
. - . 1  . .  

V t J s k  1 " X s '  ~ 1  

[ . .  "x 

,=o r!  j u % +  1 . . . ~ , ¢ ~ , ,  o , p , + , t x  1 . . . x ~ + , )  . 

(3.1) 

This equation contains two contributions, in accordance with the form of the 
right-hand side in eq. (2.4). In the first place, we note that the Hamiltonian 
term is linear in the probability density. Therefore,  the original BBGKY 
hierarchy applies to each term in the summation of eq. (3.1), and the evolution 
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law for the distribution functions can be written as 

I - - I  

+ ( s+  r)! r! dx +| . . . .  dx,+r(c3tp,+,) R (3.2) 

In this equation, the separation between elastic and nonconservative terms is 
evident. Furthermore, the form of the elastic contribution coincides with the 
original one, eq. (1.7). We shall therefore concentrate ourselves on the 
calculation of the expression for the nonconservative term, 

( 0 ,  f ,  ) R = ,-~',, (s  +r[ r)! d x ,  + | . . . .  dx,+, ( O , p , . , )  R (3.3) 

This calculation must be explicitly done for each process considcrcd in 
section 2. eqs. (2.6)-(2.9).  The replacement and development of these equa- 
tions in the right-hand side of eq. (3.3) is direct but highly tedious. Therefore. 
we only include here. as an example, the complete computation for thc case of 
the creation of a particle by collision with the background [process (b). section 

2 1 :  

f ( o , £ ) ~  = 5", (s + r)! ,.qp r! d x ~ . !  . . .  dx,~, (~,p,.r)_. 

_ ~  ( s + r ) '  I f  d.r,~, - - 1  "~r, fdx~.,x__ x,.,.,) 
--r=~, r! d x , . ! . . ,  s + r  , ,  

× p ~ . r _ , ( x ~  . • • - i , - / ;  • . .  x , . r x )  

- -  ° . -- ~ r p,+,(x! . x, .~) dx dx'  ~'~ or,(x, xx ) 
t = l  

= ~ ,  ( s + r - 1 ) !  , dxo.2(x__~x,x; ) 
r=~, r !  ~-I 

f 
× J d x , .  t • . . d x , . r p , . r _ l ( x !  . . . . ( ' . ( - , . . .  X , _ r X )  

Z ~3 + F - -  IJ.  
. . . .  + r:! (r ,~1 dx , , ,  d x , ~ .  dx o:(x--->x,x,+~) 

> (  p , ~ r _ l ( X l  . . . f C ,  . . . X ~ a _ r _ l X  ) 

+ :! ( r -  1)t ;:1 

X p~. + r -  1 ( X  I " " " "~]  " " " X v + r -  I x )  
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~ ( ~ + r - l ) , f  f + - dx,+ dx,+ r dx o'2(x--,x , 
,~ ,  (r 2)]. ' ' ' "  

x p , + r - t ( x l  . .  • ~'., + ,  . .  • x . , + ~ - i x )  

- ,=o r! ,=t dxdx'  o'2(x,-'*xx') 

x [ d x , +  I . . . dx,+~ p,+~(xt • • • X,+r)  

- ~'~ ( r - l ) !  d x ' ~ l ' ' "  " + 
r = l  

x p , . A x ~ . . ,  x , + r )  • 

A redef in i t ion  

dis t r ibut ion funct ions  to givc 

(o,f. ,) .  = Y . '  ~ dx ~ ,_(x- ,  x , x , ) f , _ , ( x ,  . . . x-,L . . . x ,x)  
I ,]  

+ 2 ~ [dx dx' o'2(x'->x,x')f,(x,... Y¢,... x,x) 
,=1 J 

t = l  

+ l X ~ + r )  

i ----~ XX') 

(3.4) 

of  the s u m m a t i o n  indices enab l e s  the  r econs t ruc t ion  of  the 

( 3 . 5 )  

In the same  way .  the con t r ibu t ions  to the evo lu t ion  of  the r e d u c e d  d is t r ibut ions  

can be ca lcu la ted  for any nonconse rva t ive  process ,  giving 

(0,f~) t = -  f~(x I . . .x~) ~ o ' , ( x , ) ,  (3.6a) 
t = l  

t .]  

2 f ax as, . . . .  ,-,x) 
t = l  

- f , ( x , . . ,  x , ) ~  f dx dx '  o'2(x,---) xx '  ) , (3.6b) 
t = l  

(0 , f , )~ = dx dx '  o-3(xx'---> x , ) f , .  ,(x I . . . .  f , . . .  x ,xx ' )  
1=1 

l - - |  

- f~(xt .. .x,) ~ '  ~ dxo'~(x,x,--,x,. (3.6c) 
I,] 
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(,,r,), = ±'  f dx dx' ~(x.,.'-.~,x,~,).r, , ( . , - , . . . . ~ , . ~ - , . ~ ,  . . . .  ,.,.,..,.'~ 
q k  

+ 3 2 '  f d x  dx '  dx" cr4txx' ~ x , x , x " ) f , ( x , . . .  Yc,~, . . .  x , xx ' )  
1.1 

+ 3  ~ faxd~'dx"dy~(xx'--, .rx, . . . .  Y ) L , ,  ( x , .  . • .~?, • . . x , x x ' )  
t - I  

f xx'x"~e (x, . . . x , xy )  - 2 dx  dx '  dx" dy  trj(x,y ~ ,J, ~ z 
i I 

- ! . ~ , . . .  x,~ ~ '  J',..,~',x".~,.~,-.x.~..~..,. ~., ~,~ 
t . l  

(3.6) constitute the BBGKY hierarchy for thc creation and removal Eqs. 
events here considered. 

The contribution of the nonconservative processes to the Boltzmann equa- 
tion is obtained evaluating the BBGKY formulae for s = 1, and applying the 
hypothesis of molecular chaos, eq. (1.8). Calling f -  f~, we find 

(o,I3, = - f (x ,  )o,(x, ) . (3.7a) 

(/~,f)z = 2 f dx dx'  cr,(x--> x,x '  )f(x) - f (x ,  ) f dx dx' cr.l.r, - - -*  Jr3t ' ) .  

(3.7b) 

(O,f)3 = ~ dx dx'  tr3(xx'---* x I ) f ( x ) f ( x ' )  

- 2f(x  I ) f dx  dx'  o~(x,x'--~ x ) f ( x ' ) ,  (3.7c) 

(O,f)~ = 3 f dx dx '  dx" dy tr4(xx'---> xlx"y)f(x)f(x')  

- 2f(x 1 ) f dx dx' dx" dy o'~(xly---> xx ' x " ) f ( y )  . (3.7d) 

These terms must be added to the usual collision integral in eq. (1.9). 
It is possible to identify in each contribution to (0 , f )q  the clcmentarx 

process from which an)' term of eqs. (3.7) arises. In eq. (3.7a) the only 
contribution represents a loss to the distribution function due to the removal of 
a particle in x~, with probability o-~(x~). The loss term in eq. (3.7b) identifies 
the collision ( x l ) - -> (x , x ' ) .  which creates a new particle and modifies ti~e 
coordinates of the incoming particle. On the other hand, the gain term 
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represents the processes (x)----, (x t , x ' )  and (x')---~ (x i , x), which have the same 
contribution. In the same way, in eq. (3.7c) the equivalent collisions 
(xl,x')---~ (x) and (x~, x ) -o ( x ' )  determine a loss for the distribution function 
and (x, x')---~ (xl)  is a positive contribution. Finally, in eq. (3.7d) the loss and 
gain terms are given by (x i , y ) -*  (x, x', x") and (x, x')---* (x~, x", y) respective- 
ly. The equivalent processes determine the prefactors of each term. 

At this point, we have reached the main aim of this paper, that is, the 
obtainment of the extended Boltzmann equation from the LiouviUe equation 
through the construction of a BBGKY hierarchy. Now, it is necessary to 
compare it with the previously proposed models, in order to understand 
eventual involved assumptions. 

4. Comparison with the model Boitzmann equation (1.1) 

The main difference between the nonconservative contributions to the 
Boltzmann equation calculated in section 3, eqs. (3.7), and the model equation 
(1.1) consists in the fact that, in this last case, each creation or removal effect 
determines the addition of only one term to the collision integral. This 
additional term is positive for creation events and negative for removal 
processes. Instead, from the B B G K Y  hierarchy, we obtained in general a gain 
and a loss contribution to the right-hand side of the Boltzmann equation. As 
we discussed in section 3, the negative contribution in a creation process has its 
origin in the scattering of the incoming particles, which determines a loss of 
probability in the coordinates of those particles, even when a new particle is 
created. On the other hand, when a particle is destroyed by collision with 
another particle [process (c), section 2], the scattering determines that the 
remaining particle positively contributes to the distribution function in its new 
coordinates. 

Therefore, the difference between both formulations lies in the scattering 
process taking place when a particle is generated or annihilated. Indeed,  even 
when it is not explicitly said in the proposed model Boltzmann equation (1.1), 
the colliding molecules are not supposed to be scattered during the creation 
and removal events. Instead, the nonconservative processes formulation here 
introduced ,.,~.~;n.~,- the . . . .  ;~,u:,., . . . . . . . . .  r,,_,~,~,,,,Ly of such scattering. 

It is then interesting to analyze the form of the transition frequencies or, 
defined in section 2, which enables the derivation of the Boltzmann equation 
(1.1) from the nonconservative contributions computed in section 3, eqs. (3.7). 
These transition frequencies must determine the coordinates of the outgoing 
colliding particles to be equal to those of the incoming molecules. On the other 
hand, they must satisfy the symmetry properties described in section 2. 



D.H. Zanette / BBGKY hierarchy for extended kinetic theory 425 

Furthermore, an exact identification between both formulations requires the 
background distribution function g(v) to be made explicit in the collision 
frequencies describing the interaction with the host medium. The relation 
between the velocity variables and the phase space coordinates is straightfor- 
ward, since the collision frequencies are not expected to depend on the spatial 
variables. 

The imposed conditions meet in the following forms for the transition 
probabilities: 

f 
c~,(x) = J dz ~rr.(xz)g(z) , 

l[ f ~,(x'--,  xx") = ~ ~(x - x') dz crdxz---, x")g(z ) 

+ 6(X"-- x') f dz o'B(X"Z--* x)g(z)] , 

(4.1a) 

(4.1b) 

~ ( x  x x)  = ~_[~(x - x')ar(x'x ") + ~ ( x -  x")c/(x"x')l (4.1c) 

~4(x'x"--->xyy') = ~ [ 6 ( x ' - y ) 5 ( x " - y ' ) ~ C ( x ' x " - - > x )  

+ 6 ( x ' -  y ' ) 6 ( x " -  y)~C(x'x"'--->x) + 6 ( x ' -  x)6(x"-  y)~(x'x"--->y") 

+ 6 ( x ' -  y )6(x" -  x)~C(x'x"--->y ') + 6 ( x ' -  x)6(x"-  y')~(x'x"---,y) 

+ ~ (x ' -  y ' ) 8 ( x" -  x)a~(x 'x"~y) l  . ( 4 . 1 d )  

The replacement of these particular forms in eqs. (3.7) completely identifies 
both formulations for the extended kinetic theory. 

5. Conclusion 

The extended kinetic theory, in which generation and annihilation of parti- 
cles are taken into account, is formulated by means of a generalized Boitzmann 
equation. Up to this moment, the form of this generalized equation had been 
heuristically proposed, involving an ad hoc construction of the ,.~,,,e~v~,,,u,,,s'~:-~" 
collision terms. 

In this paper, we have developed a formal derivation of the extended kinetic 
equation from the Liouville theorem, which governs the evolution of the 
probability density in the phase space. This derivation has required a generali- 
zation of the definition of the probability density and the reduced distribution 
functions, since the number of particles is not a constant in the system. In fact, 
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we have introduced a density vector whose components describe the condition- 
al probability density in the phase space, for a given number of particles. The 
reduced distribution functions we, e accordingly redefined, in order to preserve 
their underlying concept. 

The nonconservative prt~cesses have been introduced in the Liouville equa- 
tion by analyzing the effects that these microscopic events produce in the 
variation of the probability density. When applied to the evolution equations 
for the reduced distributions, the extended Liouville theorem has given ground 
to an extended BBGKY hierarchy. It is interesting to note that, in this 
generalized hierarchy, the reduced s-particle distribution is not only coupled 
with the (s + 1)-particle distribution, as occurs in the original equations, but 
also with the (s - l)-particle distribution. This is a direct consequence of the 
existence of creation processes. 

Through the hypothesis of molecular chaos, the last step of the extended 
BBGKY hierarchy determines the form of the generalized Boltzmann equa- 
tion. It is found to differ from the previously proposed models. The origin of 
the difference is due to the fact that in the previous models the particles which 
interact during a generation or annihilation event are not supposed to be 
scattered. This assumption has been removed in our analysis, giving place to 
gain and loss terms which explicitly reduce to the previous models when the 
transition frequencies inhibit the scattering. 

Through this generalized BBGKY hierarchy, a new class of model 
Boltzmann eqdations describing nonconservative processes has arisen. The 
study of their solutions will be the subject of future work. 
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