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A kinetic theory of dense fluids is presented in this series of papers. The theory is based 
on a kinetic equation for subsystems which represents a subset of equations structurally in- 
variant to the sizes of the subsystem that includes the Boltzmann equation as an element 
at the low density limit. There exists a H-function for the kinetic equation and the equilib- 
rium solution is uniquely given by the canonical distribution functions for the subsystems 
comprising the entire system. The cluster expansion is discussed for the N-body collision 
operator appearing in the kinetic equation. The kinetic parts of transport coefficients are 
obtained by means of a moment method and their density expansions are formally obtained. 
The Chapman-Enskog method is discussed in the subsequent paper. 

I. INTRODUCTION 

In Gibbs’ statistical mechanics [ 1 ] of equilibrium systems the thermodynamic observ- 
ables of a system, whether it is ideal or real, can be calculated in terms of molecular 
parameters, temperature and density in complete agreement with experiment. For 
example, the entropy of a system of N interacting particles is calculated by 

where x(‘~) denotes collectively the phases of particles and 

J’(N) = 
0 

ce-4H 
2 p = l/kBT 

with H defined by the Hamiltonian of the system and C by an appropriate normali- 
zation constant. It is now firmly established that (1.1) gives the correct entropy for 
arbitrary interacting particle systems. 

It is well known that equilibrium statistical mechanics and therefore thermo- 
dynamics of ideal fluids can be given the kinetic theory foundation by the celebrated 
Boltzmann equation [2]. If the Boltzmann equation is solved by the Chapman-Enskog 
method [3], the equilibrium solution gives [4] rise to the thermodynamic properties, i.e., 
the entropy, energy, and pressure, etc. of ideal fluids (gases). It therefore can be stated 
that Gibbs’ equilibrium statistical mechanics and thermodynamics are within the 
framework of Boltzmann’s kinetic theory at least for ideal fluids. 
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Since Mayer [5] succeeded in 1937 in obtaining the equation of state for dense inter- 
acting gases from the equilibrium statistical mechanics viewpoint, studies have been 
made by Bogoliubov [6], Born and Green [7], Kirkwood [8], and Yvon [9] to develop 
kinetic theories for dense interacting fluids as extensions of the original Boltzmann 
kinetic theory. Since 1946 there has been an enormous amount of works reported [lo, 
1 l] on the subject especially along the lines initiated by Bogoliubov and Kirkwood. 

In this series of papers we propose a kinetic theory of dense fluids which gives rise 
to an entropy formula similar to that in Gibbsian statistical mechanics and at the same 
time includes the Boltzmann kinetic theory of dilute gases in the low density limit. 
By solving the kinetic equation, we obtain transport coefficients for dense fluids. The 
kinetic equation will be solved in two different methods. The transport coefficients 
obtained can be used for investigating their density dependences in a way much similar 
to Mayer’s density expansion for the equation of state of dense gases. Some aspects 
of density expansions will be discussed. 

In Section II the kinetic equation is “derived” or rather rationalized. The main aim 
of this section is to show the basic ideas behind the proposed kinetic equation. It is 
entirely possible to investigate the kinetic theory of dense fluids by taking the kinetic 
equation presented below simply as a hypothesis or conjecture. It leads to the correct 
hydrodynamic equations and the transport coefficients which are formally in agree- 
agreement with the results by linear response theory for thermal phenomena as will 
be shown in the following paper. 

In Section III the density expansions of collision operators are discussed. In 
Section IV the H-theorem is proved by means of the kinetic equation obtained. As 
a consequence, Gibbs’ canonical ensemble distribution function is obtained as the 
unique equilibrium solution to the kinetic equation presented. In Section V various 
macroscopic equations are derived by using the kinetic equation. In Section VI the 
kinetic equation is solved in a moment method and the kinetic parts of transport 
coefficients are calculated for pure monatomic gases. An alternative and more 
rigorous solution method will be discussed in the following paper. The method is a 
generalization of the Chapman-Enskog theory for the Boltzmann equation. Section 
VII is for discussion. 

II. DERIVATION OF THE KINETIC EQUATION 

It is useful to examine the Boltzmann equation and some aspects of macroscopic 
systems in order to enable us to go beyond the theory of Boltzmann. 

Since the Boltzmann equation contains only single particle distribution functions, 
it basically describes the temporal and spatial evolution of a single uncorrelated 
particle whose interaction with the rest of the system is described by a collision with 
another uncorrelated particle. Note also that the collision zone is translationally 
invariant and the distribution functions do not change over the distance of order of 
molecular interaction. Precisely due to this lack of spatial correlation between particles 
in Boltzmann’s theory, the thermodynamic functions derived from the solution to 
the Boltzmann equation take inevitably the forms for ideal fluid systems. This defect 
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can be corrected to some extent by following the program put forward by Bogoliubov 
[6] and later elaborated by Choh and Uhlenbeck [lOa]. Although the Bogoliubov- 
Choh-Uhlenbeck theory should in principle lead to a proper account of the Gibbsian 
statistical mechanics of equilibrium systems, it is not possible to demonstrate that 
it indeed is connected to the latter, primarily because the general expansion formula 
is lacking in the density development of the collision operator for dense gases, and 
secondly because the lack of the general expansion formula consequently makes 
it rather difficult to prove the H-theorem or an equivalent theorem which would make 
unique the equilibrium solution to the generalized Boltzmann equation in their theory. 
Probably, there exists such a theorem even for the Bogoliubov-Choh-Uhbenbeck 
theory, but it would take an enormously complex mathematical relationship between 
the distribution functions and the entropy so that it would be almost impossible to 
guess it [lob]. Therefore, it is necessary to look for an alternative theory. 

In order to prepare ourselves for such an alternative, let us examine the Boltzmann 
equation, 

where 

C[F, , Fz] = n J dP, s db dOb sin /3 2n / z’12 / [F;F’,’ - F,F,] (2.2) 

with the standard notations. This is the well-known Boltzmann collision integral 
which may be derived in some approximations from the integral 

C BBGKY = -n 
s 

d-r, g12 . g- Fl,(.Ul 2 x2 ; t> (2.3) 
1 

where xi = (Y? , P,), n is the bulk density, F,, the two-particle distribution function, 
and FIZ the force between 1 and 2. If C[F, , FJ is replaced by C,,,,, , (2.1) becomes 
the leading member of the so-called BBGKY hierarchy. Thus, we interpret the equation 
as describing the evolution of the single particle distribution function Fl which is 
determined by the interaction of particle 1 with the rest of the system and this inter- 
action is effectively described by FIB , the two-particle distribution function, and the 
force %$ . Boltzmann in essence assumed that this interaction could be effectively 
accounted for by approximating F,, with the product of two single particle distribution 
functions, F,F, . It has been demonstrated in numerous analyses and resarches on 
the Boltzmann equation that such an approximation indeed is valid in the low density 
limit. In Bogoliubov’s theory it is proposed to calculate F,, in a different way, by 
regarding F12 as a functional of Fr as far as its time evelution is concerned. 

Whether one follows the Boitzmann theory or the Bogoliubov theory, there is a 
common basic feature. That is, the system under consideration is always divided into 
two distinct parts; one the observed object, i.e., one or more particles, and the other 
the rest of the system which perturbs the observed object and as a consequence in- 
fluences the evolution of the distribution of the former. In the Boltzmann theory the 
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observed object is a single particle and in the Bogoliubov theory there are an infinite 
number of them forming a hierarchy, i.e., one particle, two particles, etc. 

In the Boltzmann theory the view that the interaction between the observed object 
and the rest of the system can be accounted for by F,F2 entails a qualitative alteration 
in the character of the system if there exist interactions between particles, since the 
approximation F,, + F,F, essentially makes the system a collection of independent 
particles which is not the picture of the system one has had at the outset. If the inter- 
actions are weak between particles, then this approximation appears quite reasonable, 
but it nevertheless makes a qualitative difference to the results obtained of the macro- 
scopic properties from the Boltzmann theory, since they turn out to be pertaining to 
ideal fluids. 

This approximation is in effect equivalent to replacing the Hamiltonian of an inter- 
acting many-particle system with that of a free particle system. However weak the 
interactions may be, it is a qualitatively drastic approximation. This qualitatively 
drastic nature of approximation will disappear, if the particles are paired two each into 
correlated pairs which are assumed to be non-interacting. An important feature of 
this approximation is that the free particle assumption is removed. Going a step 
further, if we visualize correlated trimers of particles and assume that they do not 
interact with each other, the drastic nature of the free particle assumption is so much 
reduced accordingly due to the interactions retained between the particles in trimers. 
If this process is continued to a sufficiently large size of clusters of particles, then a 
stage will be eventually reached where the approximation is really good, since the 
interaction between two, say, Z-member clusters will be sufficiently small, compared 
with the “internal” energy of the clusters, if I is large, mainly owing to the fact that 
the major contribution to the intercluster interaction energy will come from the 
particles on the peripheries of the clusters and this intercluster interaction energy 
will constitute only a small portion of the entire interaction energy of two completely 
separated clusters. Therefore, in this limit the energy of the entire system can be well 
approximated by an additive form of Hamiltonian, i.e., 

0.4) 

where H, denote the Hamiltonians of the cluster of particles. The H, , of course, 
consists of the kinetic and the potential energy. The important feature of (2.4) is in 
the neglect of the interactions between the clusters (subsystems) of the system. If 
we assume that the interaction potentials are pairwise additive, then the difference 
between 

(2.5) 

and 
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is 

where N is the total number of particles, s the number of particles in the subsystems, 
v the number of subsystems such that 

us = N (2.7) 

and the particle indices j and k must be understood to be in the set (subsystem), when- 
ever a sum over the subsystem index occurs. The difference above can be much 
reduced, if the interaction strength of vjk is increased by v-fold in each subsystem 
which is allowed to occupy the entire volume of the system, each time when the whole 
system is divided into v subsystems. Then (2.4) takes the form 

where 

H==zH, (2.8) 
Or=1 

H, = Hoc, + iv C 1 vi, , 
j#k 

(2.9) 

Hti denoting the kinetic energy of the subsystem 01. The number v plays in (2.8) 
and (2.9) a role similar to a charging parameter which is increased stepwise as the 
system is divided into a corresponding number of subsystems occupying the whole 
volume. It is a kind of renarmalization of potential strength and its effect is to main- 
tain the effect of correlation at the same level as the system is thinned by division into 
v subsystems. A further discussion is given below on the charging (renormalization) 
process. Observe also that the Hamiltonian in (2.8) is additive in the limit of large S. 
The idea of dividing the system into a large number of almost independent subsystems 
of sufficiently many particles is in line with the general view of macroscopic systems 
and the way they are believed to evolve toward equilibrium from a nonequilibrium 
state [12b]. 

The notion of additivity of energy is quite basic to thermodynamics and equilibrium 
statistical mechanics. Underlying in this important notion is the implicit assumption 
that the components comprising the whole system do not interact significantly with 
each other. In practice, this assumption can be made meaningful if the interactions 
between the components (subsystems) are negligibly small, compared with the energy 
content of the whole subsystems. This condition is in general met by macroscopic 
size subsystems, since the “surface energies” are comparably quite small, if the sub- 
systems are large enough. We emphasize that however small and negligible the inter- 
subsystem interaction energies may be, it is through such interactions that the system 
eventually reaches equilibrium. We will see that such interactions are indeed 
appropriately taken into consideration in the present kinetic theory. We also observe 
that this concept of additivity of energy is essential for deriving [12] canonical ensemble 



192 BYUNG C. EU 

distribution functions from microcanonical ensembles in equlilibrium statistical 
mechanics. 

Inasmuch as Boltzmann’s “Stosszahlansatz” essentially amounts to neglecting the 
correlation between particles, i.e., interaction, the above consideration now seems to 
make it logical to think that if a similar assumption is made on higher order distri- 
bution functions, say, F12...s,s+1...2s such that 

F 12...s.s+1...28 = - &...sFs+l...28 

the approximation should certainly be so much less drastic than the approximation 
in which 

which is tantamount to the assumption that there is no correlation between the 
particles, and therefore we can anticipate an improvement in theory. 

The above reasoning points to the following viewpoints of dense fluids: A macro- 
scopic system, say, a gas or liquid, consists [12b] of small subsystems which interact 
with each other weakly (in the relative sense), but the particles in each subsystem 
may strongly interact among themselves. The size of subsystems may be viewed 
as much larger than the intermolecular interaction range, and the number of particles 
sufficientoy large, but smaller than the total number of particles in the whole system. 
A disturbance generated by some means within a subsystem propagates through the 
interactions between the particles in the subsystems and then through the interactions 
between the subsystems, which may be made sufficiently weak by taking the subsystem 
sufficiently large so that the internal energy is comparatively large. Since the coupling 
is relatively weak between the subsystems, the extensive macroscopic variables of the 
total system are additive. Note, however, that from the viewpoint of irreversibility, 
such weak interactions between the subsystems are essential for the eventual establish- 
ment of equilibrium and must be appropriately utilized in kinetic theory. At this point 
the sitaution appears quite similar to that with the Boltzmann theory of ideal fluids. 
There the particles interact (correlate) only to the extent that they collide according 
to a certain force law, driving the system to equilibrium. In our picture the subsystems 
which are sufficiently large interact with each other only weakly in the relative sense 
and thus may be regarded as free to a good approximation as far as the distribution 
function is concerned, yet the negligible, tenuous interactions between them drive 
the system to equilibrium through “collisions” between them. We now see a complete 
paralellism between the two pictures, i.e., Boltzmann’s and the present. However, 
the present picture is more general in the sense that it is inclusive of the Boltzmann 
picture, since the Boltzmann picture is simply the case when the,subsystems consist 
of a single particle each. By now, our idea of a kinetic equation for dense fluids 
takes a more definite and concrete form. 

It appears quite obvious to see how Boltzmann’s original idea can be generalized: 
In fact one can simply write down the kinetic equation (2.36) below in analogy to 
the Boltzmann equation and take it as a hypothesis for the theory of transport 
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processes described in these papers. However, we shall try to rationalize it as much 
as possible in the following. 

In order to make our discussion simple, we assume that the system is a classical 
monatomic fluid of N identical molecules and there is no chemical reaction. 

The distribution function FIN) for the whole system is described by the Liouville 
equation, 

where 9 is the Liouville operator, 

with the definitions, 
z. = -i[H, ) ] 

9’ G i[V, ] 

v = + 1°C vj, . 
j#k 

+ i[V, 1 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The H,, is the kinetic energy of the system. The x (N) denotes collectively the phases 
xi = (ri , P,), i = 1, 2 ,..., N, for the entire system. The phases of an I particle system 
will be denoted, whenever convenient, by xtz) which means (rl , rZ ,..., rl , P, ,..., P,) 
collectively. The Liouville operator for an I-particle system will be denoted by ,EpI 
which is defined similarly to (2.11), i.e., 

where 
.=!zL = --i[H, ) ] (2.15) 

It is convenient to write interaction Liouville operators 9; as 

(2.17) 

In the usual theories of dense fluids or gases the Liouville equation (2.10) is 
integrated over (N - I), (N - 2),..., particle phases. Then the so-called BBGKY 
hierarchy results. Since the hierarchy is open, it is truncated or closed by some means 
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of approximation [8] or hypothesis [6]. We do not exactly follow either of these 
lines of approach. 

Suppose there exists a numbers satisfying the relation (2.7) such that (2.8) and (2.9) 
together constitute a good approximation to the total Hamiltonian. Then the object 
of our interest would be the evolution of the subsystems of s particles. The distribution 
of the s particles P)(x(~); t) will obey the equation obtained by integrating (2.10) 
over (N - s) phases: 

where 

F(s’(,y(S’; t) zzz vs 
s 

dr’N-“‘J”N’(X’N’; t), (2.19) 

and 

dr(N-s’ = dx,+l I.. d-r, 

where 

u-1 

%N-s) = AL..., + c c 2;; (2.20) 
B=lBs+l~jdi~bB+l)s 

v-l v-l 

~cp;,..." = 1 c c c z;e (j < k). (2.21) 
a=l~=1(a-l~s+l~~gasBs+l~k~~B+l~s 

Here the particles are numbered consecutively for subsystems through v. Note that 
vs = N, v being the number of subsystems with s particles each. This relation always 
holds between v and s, although the s must be a limiting number for which (2.8) 
and (2.9) constitute a good approximation to the Hamiltonian of the entire system. 

The last term on the right hand of (2.20) does not contribute to the integral in (2.18), 
provided that F(“’ is equal to zero at the boundary in the phase space. Thus (2.18) 
may be written as 

i 2 F(S)(x(“). 
at’ ’ 

t) = &lp(x(“); t) + v 1 dr(N--s)~i~...“F(N)(X(N); t), (2.22) 

where we have affixed the subscript and superscript, respectively, to Fts) and z5 
in order to distinguish the subsystems. If the integration is carried out over the phases 
x,+~ ,..., xN in (2.21), we obtain the sth member of the BBGKY hierarchy. The reason 
why we do not carry out such integrations is in the fact that we visualize the whole 
system consisting of v subsystems of s particles. Note that we have not as yet “charged” 
the interaction by a v-fold as in (2.9). The meaning of (2.21) is that it now represents 
the interaction Liouville operator between v subsystems. 

Since we assume that the system is made up by v subsystems, it is operationally 
reasonable to assume that the whole system is prepared with v independent subsystems 
at the initial time t = 0. Since we assume that the subsystems are practically of a 
macroscopic size, such a preparation can be given a definite meaning (For example, 
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one can imagine the system made up by many bubbles containing a sufficiently large 
number of particles in different states, which can be simultaneously broken at t = 0 
by some means). Then the initial condition on FIN’ may be written in the form, 

F(N)(.Y(N); 0) = fi [F,‘“‘(x’“‘; O)/ V”], 
a=1 

where the symmetry of particle interchanges has been ignored for conveinence without 
loss of generality of the result. This initial condition seems only a special case of many 
possible divisions of the N particle system but it is consistent with our view to the 
macroscopic system that it can be prepared macroscopically by assembling large 
apparently identical systems as discussed at the beginning of the present section and 
above. 

The formal solution to (2.10) subject to (2.23) is 

JYN’($N’; t) = e-ic.Yt fJ [F,‘“)(P; O)/ V”]. (2.24) 

If we introduce a Liouville operator PO) such that 

then (2.24) may be written as 

(2.25) 

where 

F’N’@‘N’; t) z e- ibetei6e (04 fi [@)(ey(s); t)pP] (2.26) 

pyx(S’; t) = e-i2z++y(x’S’; O), d (a = I,..., v). (2.27) 

We now substitute (2.26) into (2.22) after “charging” the interactions of subsystems 
by v-fold: 

&q Vij] 2 L&qv Vij], (2.28) 

in the sense of (2.9). The rationale for this “charging” is making the subsystems, which 
are thinned by a factor of v, resemble the original system of N particles in volume V 
as far as the interactions between the particles go. This is equivalent to renormalizing 
the interaction strength by a factor v as the original system is divided into v subsystems. 
The final mathematical effect of this charging (or renormalization) is that P(O) = 
xi=, 2:’ becomes almost the total Liouville operator. In fact, it is interesting to 
observe that there are N(N - 1)/2 binary interaction terms in “uncharged” 2, 
whereas there are N(N - v)/2 binary interaction terms in the charged Z’(O). Therefore, 
the difference in the number of binary interaction terms is N(v - 1)/2 which is only 
O(v/N) compared with the binary interaction terms in “uncharged” 2. We note that 
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in the total Liouville operator _ILp in (2.26) only the 5?(O) part must be “charged” 
according to (2.28). Then finally we obtain the equation 

j ; E;(“)(.x (s); t) = DLps(l)F,(s)(x(“); t) + rN+” s dr(N-*)~~2...“nl*...“(r) 
x ir F,(“)(x(“); t) 

a=1 

where 
Q,,...,(t)’ = ,++i@J’t. 

In this equation we may write 

(2.29) 

(2.30) 

< PI 

and 5?(O) must be understood in the sense of (2.28). Although a renormalization group 
theory type argument cannot be ruled out as a way to give the kinetic equation (2.29) 
and the “charging process” used a more definite mathematical basis, this “charging” 
of Z(O) and 2:’ does not appear possible to prove by any purely mathematical means. 
We will further discuss the significance of Eq. (2.29) later in this section. 

In order to give K&...,(t) a more definite mathematical meaning, we shall assume 
that the function n”,=, F’L’)(x(“); 0) and thus nH1 Fibls)(x(s); t) satisfies the relation, 

eiiH% fJ Fpl(x’s’; t) = e*“t ,i-! jyxw; f), 

in other words, the product function is an eigenfunction of Y(O), 

cF”’ fi F, = h fi F, , 
'X-1 n=l 

where X is an eigenvalue of P(O). We will call such a function X-class. 
The operator has then a proper meaning on such a set of basis: 

(2.31a) 

(2.31 b) 

Q,,...,(t) fi F(s)(x(S); t) = e-i9teiAt a 
Ci=l 

cl F;)(#; t). (2.30a) 

Besides the requirement that Q,,...,(t) must be defined on a basis set of functions 
as in (2.30a), it must also have a limit as time increases. Since it is a manybody 
operator for a system of a macroscopic size, it is not obvious whether there exists 
such a limit, say, t, . 

If the range of interaction is finite, then the average time required for a binary 
collision is approximately the range divided by the average relative velocity. This time 
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t, is usually much shorter than the mean free path time, tmfD . This time is in turn much 
shorter than the hydrodynamic relaxation time, th . Now the question is, how long 
is t, ? This time is difficult to establish in general. One can only estimate it to a 
crude approximation. For example, if the binary collision approximation is made 
to Q,,...,(t) then t, should be the same order of magnitude as t, . In general, this would 
be the case when lower order collision approximations are made for Q,,...,(t). Based 
on this and since the time scale regime of interest for FA”’ is in the kinetic regime 
[6, lo] of t > tc , but much shorter than th , we shall assume that in such a time scale 
(kinetic) regime L?,,...,(t) may be replaced by 

sz,,...,(cx3) = f& e-itzeit@). (2.32) 

This assumption appears to be equivalent in effect to the time coarse-graining, which 
makes the wave operator and the associated collision operator time-independent in 
the time scale regime of interest. The justification for this must be sought a posteriori. 

This limit may be replaced by another limit (Abel’s limit) according to Abel’s 
theorem, 

sL,,...,(co) = !21,...v(~) = lim E 
s 

m dt e-~te-izte@“)t. 
c-+0 o (2.33) 

If (2.31b) is understood, then 

L&..JE) = j&c Im dt e-rte-izteiht 
0 

= hyo E(E - ix + is)-’ 

= CT0 --ie(9 - z)-1; z = X + k, (2.34) 

where (Z’ - z)-’ is the resolvent of 9. If the transition (collision) operator is defined 
in terms of the wave operator thus obtained, 

T12...“(Z) = 2q2...“Q12...“(Z), 

then the equation (2.29) now takes the form 

(2.35) 

i g F,“‘(x (‘); t) - cY~‘F,‘“‘(x’“‘; t) = V--N+s 
s 

d@N--s)T12...V fi F,(“)(x(“); t), 
B=l 

(2.36) 

where the limit E + +0 is understood. This is the kinetic equation we have strived 
for and will be the basis.of the present kinetic theory. It is closed for Fi*), but is highly 
nonlinear. It is also an equation that describes the temporal and spatial evolution 
of the X-class function I$=1 F~)(x(~); t). But for the collision term, i.e., the right-hand 
side of (2.36), it would describe the evolution of an independent subsystem 01. How- 
ever, the presence of the collision term removes the independence of subsystems and 
their “collisions” by their relatively weak interactions subtly influence the evolution 
of the entire system toward equilibrium. 
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Equation (2.36) looks quite similar to the original Boltzmann equation. In fact, 
it reduces to the Boltzmann equation in the limit of low density, if the system is homo- 
geneous. This will be discussed later. An interesting and important feature of (2.36), 
which we would like to discuss here, is its structural invariance to divisions of the 
system into all possible sizes of subsystems. Whether s is 1, 2,..., 100 or lOlo, its 
structure remains invariant. That is, if we assume that s = 1, then v = N and 

so that (2.36) becomes a generalized Boltzmann equation for singlet distribution 
function F-l’(x, ; t): 

1 -iv-N+1 dr(N-l)~(l) 

s 
12...N(Z) fi F,'l'(x, ; t). (2.37) 

B=l 

If T12...N is approximated by T,, , a two-particle collision operator, then (2.37) leads 
to the Boltzmann equation. In this sense (2.37) is a generalized Boltzmann equation, 
but is different from other known generalized Boltzmann equations. We stress that 
(2.37) has a well-defined N-body collision operator. An important defect of (2.37), 
however, is the lack of correlations between particles, which correlate with each other 
only in the sense of collisions. We note that (2.37) may be looked upon as a generali- 
zation of the kinetic equation obtained by Hollinger and Curtiss [13]. 

Now, if the number of particles in subsystems is increased by 1, then doublet 
distribution functions Fi2’(x(2); t) a re the basic quantities of interest. On this level of 
description the equation still looks like (2.37) in its structure, yet the correlations 
between particles are not completely neglected, since FA2) still retains the correlation 
between two particles in subsystem LX (In fact, since it is sufficient to have Fi2) for 
all practical purposes in theory of transport processes, one can develop a theory with 
s = 2 in (2.36)). Therefore the neglect of intersubsystem correlations looks less severe 
from the viewpoint of the entire system than in the first level of description. By con- 
tinuing this process, we will reach a points beyond which (2.36) describes the evolution 
of the macroscopic system of interest almost rigorously. Interestingly, the evolution 
equation for such a collection of subsystems still looks like the generalized Boltzmann 
equation (2.37). We shall show in the subsequent sections that Eq. (2.36) indeed has 
capability of describing the irreversibility as well as transport processes of dense fluids. 

The present theory is not capable of giving a mathematical proof for the existence 
of the limit of s or its precise value in the limit. We simply assume that such a limiting 
value exists. The ignorance of the precise limit, however, is not a limitation on the 
theory, since measurable macroscopic quantities do not depend on it which drops 
out of the macroscopic equations valid in the thermodynamic limit. Neither is it our 
intention to attempt a mathematical justification of the so-called “charging” process 
we have used for (2.36) except for making the folloing argument: Since we are using 
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Fz’ for calculating macroscopic quantities and Fp’ are normalized over the entire 
volume (see below), such a “charging” charging appears to be quite reasonable within 
the context of our picture of macroscopic systems and processes. To the extent that 
these two aspects are not mathematically and rigorously proved, the present theory is 
not “proving” why irreversibility occurs, but it does show how it can be demonstrated 
to occur in macroscopic systems such that kinetic theory is bridged to thermo- 
dynamics. At least the kinetic equation presented can be used as a model. 

It is of course possible to write down a kinetic equation or a master equation such 
that the entropy of the system is defined by (1 .l) and its time derivative is positive 
definite as was formally done by Green [7d]. However, there has not been available 
a theory in which a systematic development of transition probabilities (operators) 
is possible and moreover transport processes can be systematically described. These 
aspects of the present theory will become clearer as we proceed to the subsequent 
sections and the following paper. In the next section we first consider some aspects 
of the collision operator T12...u , which will be used in our discussions on irrever- 
sibility and transport coefficients. 

III. COLLISION OPERATORS AND THEIR DENSITY EXPANSIONS 

The collision operators Tr2..&) and TIO...N(~) in (2.36) and (2.37) are N-particle 
operators supported by h-class functions (2.31). They are defined in terms of N-particle 
wave operator !&...v or Q,,..., as in (2.35), but their calculation is another matter 
that cannot be achieved rigorously. It will require one sort of approximation or 
another. Our primary purpose here is to investigate some properties of the transition 
operators, the equations they obey, and their density expansions. 

It is instructive to begin with T12...N . It is given by the form 

T 12...N(Z) = =q~...h&..N(Z). (3.1) 

In this case we have ~8~) in the form 

_Ep’O’= +c 
,=1 W7j i’rj 

since 

g(“) = -jl!L.L 
1 

r77, ar, 

0.2) 

due to the fact that there is only one particle in each subsystem. Therefore, we see that 

(3.3) 

in the present case. Since the wave operator Sz,,..., may be written in the form 

J-2 12..+,(z) = 1 - w,(z) zP;Z...,h, (3.4) 
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where 
B,(z) = (9 - 2)-l, (3.5) 

the N-particle resolvent operator (propagator), we obtain a classical analog of the 
Lippmann-Schwinger equation for T12...N, 

T,,..., = gp;z.. N - -ctp;z. ..p&fjq(z) -Ep;z. ..N 

where 
= -Ep;z. ..N - cYi4;,...,9$‘(z) T12...N (3.6) 

92$‘(z) = (9”’ - z)-1, (3.7) 

the free particle resolvent operator. Eq. (3.6) may be solved by a suitable method such 
as perturbation theory, etc., if the coupling is weak. We also note that there exists 
the following relationship: 

.3&r(z) = W$‘(z) - B’lv”‘(z) T,,...,(z) 9$‘(z) (3.8) 

which is related to (3.6) and we also note the relationship, 

.=q,...,Bf,(z) = T,,...,(z) .@$‘(z). (3.9) 

These are the standard formulas which can be easily proved in the classical scattering 
theory14 in phase space. In order to discuss the density expansion of the collision 
operator, it is useful to consider a cluster expansion of T12...&). For this purpose let 
us define connected collision operators as follows: 

where 

7$(z) = c!Tp;z - oLp;2a4@‘(z) T,(,l)(z) (3.10) 

9-,(;;(z) = T$ - 7’;;’ - T;;’ - T$ (3.11) 

The meanings of T,, and T,,, are as follows: T,,(z) is the collision operator for the 
collision between particles 1 and 2 imbedded in (N - 2) free particles acting as 
spectators and T$ the collision operator for the three-body collisions of particles 
1, 2, and 3 imbedded in (N - 3) free particles. Since the three particles do not 
necessarily collide, Tiii can be decomposed into two-body collision and true three- 
body collisions of particles 1, 2, and 3 embedded in (IV - 3) free particles. Therefore, 
by subtracting the two-body collision part, we are insured of a genuine three-body 
collision by Y$ . By continuing similarly, we define 
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where 

(3.15) 

(3.16) 

and Ti$ are defined similarly to (3.12). In general, we define connected N-body 
collision operators by 

i.e., 

where $‘, means the sum over all ways of dividing the system (1, 2,..., IV} = C 
into m disj”oint clusters C, , C2 ,..., C, = (C,} whose union is C. For example, if the 
system of N particles is divided into sets, (C, = (ij), C, = (I),..., C,,, = (l)), then 

and thus Y(f) lJ,l,,..,l is simply the two-body collision operator for i and j imbedded in 
(N - 2) particles. Similarly, if {C, = (ijk), C, = l,..., C, = I}, then, 

which makes up the third term in (3.17). This kind of cluster expansion was used 1151 
before for discussions of density expansions of time-correlation functions for trans- 
port coefficients. 

Therefore, when (3.17a) is substituted into the kinetic equation (2.37), it take the 
form, 

x fi @(xa ; t) (3.18) 
a=1 
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Thus, the first two lower order terms in the collision integral of (3.18) are, for example, 

c 
T/-N+1 

"'lk& = (N - I)! s 
dP-l~~~!..l fi Ff'(x, ; t) 

B=l 

= g-y;;, J dl-l)T12 fi Fa(l)(xs ; t) 
8-l 

c,,, ,..., 1 = V-N+1 1 dP19-;y...l 
m (N--22)! 8=1 

V-N+1 

= (N-2)! 

(3.19) 

(3.20) 

Since the permutations of the set C, , C, ,..., C, lead to the same transition operator 
for a given set, there are (N - I)! of C,,, ,.,,, 1 and (N - 2)! of C,,, ,,,., 1 , etc. Thus we 
may finally write for (3.18) 

(3.21) 

The first term on the right-hand side of (3.21) represents the contribution of binary 
collisions. Since some of the collision integrals vanish by the identity 

I dx, **- dxN 7’,J(xfN’; t) = 0 if i,j = 2,3 ,.,., N, 

there are only (N - 1) equivalent nonzero contribution to the collision integral. 
Thus it may be written in the form, 

-iV-N+1 I dFN-” gk Tik(z) ,i &‘(x, ; t) 

= -in s dx, T,,(z) Ft)(n, ; t) F>)(x, ; t) 

where 

(3.22) 

For homogeneous systems (3.22) leads to the Boltzmann collision integral as demon- 
strated by many authors [6,8, 10,15, 161. There are $(N - l)(N - 2) nonzero 
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equivalent contributions to the three-body term, i.e., the second term on the right 
hand side of (3.21). The three-body contribution may be written in the form, 

-iV-N’l s KAY1 4=1 
= -i ; j dx, dx, cF;;;(z) fi &$)(x0 ; t). 

5=1 
(3.23) 

Putting (3.22) and (3.23) together into (3.21), we obtain the kinetic equation in the 
form, 

t $ j dx, dx, 9-;;;(z) fj Fs”‘(xo ; t) + ... 1 (3.24) 
,9=1 

as a generalization of the Boltzmann equation (tx = I). The dynamics of the three-body 
contribution is described by (3.11) and (3.12). We emphasize that S& corresponds 
to a connected diagram for the three-body system (123), owing to the fact that the 
disconnected collisions (diagrams) are subtracted from T$i in the definition of Yiii . 
Higher order density terms may be obtained from (3.18) by resorting to a similar 
method. It is not difficult to see that the Ith term takes the form 

$ j dxs 

2+1 

+.+ dY ’ If1 I;;!..,,,+, J? F,‘l’(x, ; t). 
a=1 

This term corresponds to the cluster integral of 1 + 1 particles in equilibrium statis- 
tical mechanics. 

Now we turn to the situation where the subsystems contain s particles so that there 
are u subsystems in the N-particle systems. Then the collision operator is given by 

TlZ...“(Z) = cq%...yBl&.“(z). (3.26) 

Then the wave operator DIZ...y(z) may be written as 

sz,,...,(z) = 1 - ~~(Z)(~ - 90)) 

= 1 - 92)N(Z) Lz;,..., ) (3.27) 

in the space supported by h-class functions. Thus we now have the classical Lippman- 
Schwinger equation1 

TlO...“(Z) = J&!..., - L?P;Z...“%IN(Z) L&..., 

1 Note that in (2.29) ZP;2...v may be interpreted as Z&.-,, . 

(3.28a) 
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which may be rewritten as 

where 
Tl&.“(Z) = =q2..., - =q,...@s”‘(z) T,,...,(z) (3.28b) 

B’s”‘(z) = (2z(oJ - z>-‘. (3.29) 

This is the resolvent operator for v independent “charged” subsystems comprising 
the whole system. This resolvent is diagonalized by the A-class functions. We stress 
that this is not a resolvent operator for N free particles (in fact, it looks like the 
collision operator for v polyatomic molecules of s atoms). There are identities similar 
to (3.8) and (3.9) for the present collision operator T12...,,(z), if %$,I? is replaced by 
s?y. 

By assuming that the resolvent operator Woo’ is known, the collision operator 
T12...“(z) may be expanded in terms of connected collision operators as for TI,...N(~). 
The mode of expansion is quite parallel to what was done before. We devide v sub- 
systems instead of N particles into all possible disjoint sets. First, we define the con- 
nected collision operators similarly to (3.10), (3.1 l), (3.13), and (3.14), etc.: 

with 
T(s) U8Y = qj, - c!T&,,~)v(o)(z) Tj$, (3.32) 

Z& = ISI -Ep& (3.33) 
jea kE5 (j<k) 

9’ a&Y ==K$3+~,&+-%, 

and Y$$ , etc. may be defined similarly as before. Then T12..."(z) may be expanded 
in terms of YC,C,,..C,: 

T,,...,(z) = i cF:$ + i 3-$!! + ..* 
a<,8 a<R<v 

= (gy (m!)-1 9-g;c2...cm . 

m 

(3.34) 

The factor (m!)-l is inserted in order to compensate the overcountings due to the 
permutations of the indices. Here 9:;’ are the counterpart of Ti(jl' defined by (3.10). 
This represents the transition due to the collision of the subsystems 01 and /3. 

Let us investigate some aspect of Yms . (‘I For notational convenience we shall drop 
the subscripts and superscripts for the moment from the operator just mentioned. 
Then let us define qk by the equation 

TIL(z) = Pp;, - ,EP;Jf!&qz) 9-(z). (3.35) 
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Then we have 

.9- = i T.k, (j E a, k E B> 
i<k 

where the sum runs over 9 terms since there are that many interaction terms Y& 
in 9& . By regarding 9& as an element of s2 dimensional column vector, we define 
a column vector 

and also new Tik operator by 

Tik = A?;, - Y;&2~‘Tik . (3.36) 

Then it is possible to put the integral equation for 9 in the following form of coupled 
matrix integral equation, 

9- c = T C - M%?““Y ” c 

where M is a traceless matrix of dimension 9 made of Tik , 

(3.37) 

M= 

and 

0 T,, ‘.’ Tij ... 
T ... 12 0 TIN 

. . 

. . 0 . . 

Tii 

0 

T, = {T12 ,..., Tij ,... } 

which are an s2-dimensional traceless matrix and column vector respectively. The 
operator Tjk defined by (3.36) describes a collision between 01 and p through the inter- 
action L?jk (or V,,) of two particles j E 01 and k E 8. Thus if we denote the collision 
between the subsystems by the diagram, 

the second term in (3.37) corresponds to diagrams containing at least three spheres 
with at least two lines joining them. For example, the diagrams may look like 
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which corresponds to multiple collisions between a and 8. Thus we see that the 
approximation 

Fc N Tc (3.38) 

is equivalent to a “binary collision aproximation” in the sense that there are only two 
particles, one each from 01 and /3, involved during a collision between 01 and /I0 This 
approximation is still less severe than the one using (3.10), since the particles in each 
subsystem still interact. 

A similar mode of discussion applies to S$L . The lowest order approximation to 
this operator consists of three-body operators describing collisions of subsystems 
01, /3 and y effected by 3 particles, say j E 01, k E /3 and I E y. Then the diagram may be 
one of the following four: 

k f. k R k 1 k x 

Note that these diagrams do not represent simple three-body collisions, since cy, fi 
and y are subsystems of interacting particles. We will not deal with the general theory 
of expansion for these collision operators here. 

Therefore, if the expansion (3.34) is made use of for the collision integral in (2.36), 
we have 

The first term in the collision integral above may be written as 

(3.40) 

where F~~~+I are defined by (3.35). The first line is due to the fact that the particle 
indices s + 1, s + 2,..., 2s are equivalent and so are the indices y = l,..., v and the 
fact that the integrals vanish if 01 f /3. The second line arises when integration is 
carried over the subsystem phases other than those of a: and /3. This is possible, since 
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the operator YF’ contains the resolvent operator L%~“‘(z) which can be expressed 
as a convolution of two resolvent operators, one for 01 + /I and the other for the rest 
of the system: 

where * denotes the convolution. Then, the following identity holds: 

where A,-,+ is the eigenvalue of the operator Cvfar,B _Ep, for the rest of the system. 
Consequently, the effect of the v - 2 spectator subsystems appear as a parameter 
yvPaPa which may be absorbed into z. This result implies that it is only necessary to 
replace X in (3.35) with X - hvMoreB which may be put as h again for brevity of notation. 

The collision operators &(A) defined by (3.35) may be approximated. For example, 
if the resolvent operator @“‘(A) is replaced to the lowest order approximation by 
the free resolvent operator W!‘(h), then 9&(A) simply becomes the binary collision 
operators and (3.40) will be, when integrated over the phases xg ,..., x8, reduced to 
the Boltzmann collision integral (3.22). Therefore, if such an approximation is not 
made on the resolvent operator, the integral (3.40) naturally leads, on integration over 
the phases x, ,..., x,~ , to a collision integral, which is a generalization of the Boltzmann 
collision integral, since it still retains correlations within the subsystems involved. 
Similar arguments apply to other collision integrals in (3.39). For example, we have 
for three-body collision contributions 

- “(’ - ;);p - ‘) . V--~S+~ 1 dx,,, dx,+z --a dx,, i Yj s+1,28+1 fi F,(‘) 
j=l a=1 

(isa) 
(3.41) 

where %,s+1,2s+l are the connected three-body collision operators with the particle 
indices j, s + 1, 2s + I belonging respectively to subsystem 01, /3 and y. There is no 
contribution from the collision operators with two or more particle indices belonging 

595/I Is/I-I4 
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to a subsystem, by the definition of the collision (transition) operator Y$,, . (Note that 
this is the operator connecting the three subsystems.) On substitution of (3.40) and 
(3.41) into (3.39), we obtain the density expansion of the collision integral of the kinetic 
equation (2.36). This type of density expansion will be made use of for studies of 
transport coefficients in the future. 

When (3.40) and (3.41) are substituted into (3.39), a formal density expansion is 
obtained for the collision integral and the equation becomes a generalization of (3.24). 
It retains fully the effect of correlations between particles unlike (3.24). 

IV. SOME PROPERTIES OF THE GENERALIZED BOLTZMANN EQUATION AND THE H-THEOREM 

Before we proceed to study transport processes, it is useful to examine some general 
properties of the kinetic equation proposed, (2.36). 

First, we define the mass density, the total momentum, and the energy density as 
follows: 

mass density: 

total momentum density: 

p(r, t) u(r, t) = v i Vps j dF(“)&r, - I) pjf;fs)(x(s); t), 
j=l 

energy density: 

p(r, t) e(r, t) = v f. V-” s dPG(r, - r) 
i=l 

(4.1) 

x 1 P)(x(~); t), (4.3) 

where Y is the number of sybsystems, and we have dropped the subscript denoting 
subsystems from Ft8). Note that v2 appears in the potential contribution to the energy 
density since the additional factor v is due to the “charging” of the interaction poten- 
tials of the subsystems. The reason for the presence of the factor v is that we have 
divided the whole system into v sybsystems which are allowed over the entire volume. 
Since dividing the system into subsystems and allowing them over the whole volume 
amount to thinning the number of degrees of freedom and thus density, it is necessary 
to counterbalance this thinning effect by multiplying v to the average quantities of 
macroscopic variables. Note that v becomes N ifs = 1 in agreement with the theory 
of Choh and Uhlenbeck [lOa]. 
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Let us denote the collision integral in (2.36) by a more compact symbol as follows: 

c [n ,q E-5 V-N+s 1 dPN-“‘Tlz...“(Z) fj F;.yP); t). 
D s=i 

Now we consider the case of O-class functions, i.e., the functions which satisfy the 
equation, 

f&n) fi &yx(“); t) = 0, (4.5) 
l3=1 

Such a function will be denoted by Fr’ = ni=, F,, . ($) This condition is equivalent to 
the spatial homogeneity of the system in the case of Boltzmann’s equation. 

Since we have the relation 

LA?‘,(z) = do)(z) - L@‘(z) T12...“(Z) .&O’(z), (4.6) 

the integrand of the collision integral in (2.36) may be written as 

T12..&) h F,‘s’(x’“i’; t) = -B?\d”‘-‘[@,(z) - B’s”‘(z)] .L@)-l fjl FR(‘)(,+); t). (4.7) 
8=1 

We would like to make a remark that the operator relation on the right hand side of 
(4.7) is completely equivalent to the so-called intertwining relation [18] 

f2n,,....L?(“’ = 2% 12 " . . 

or its equivalent 

=Y(Ox&~...” - ii’,, . ..” Yip(O) = T,, . ..” . 

If the function is in the O-class, then we have 

T12...Y(~) FJN) = (k) .@- ‘[.C?,(z) -‘c@‘(z)] FiN) 

= ~E[FO(~‘(X(~)*; t) - F;N)(x’N); r)] (4.8) 

where the asterisk denotes the change in phases due to the collisions between the sub- 
systems beyond their changes owing to the “internal” interactions. The second line 
of (4.8) is obtained by making use of the fact that the resolvent .operators are pro- 
pagators [13, 14.17, 191 in phase space which transform one phase into another, i.e., 

-i&?(ie) F;N)(~(N); t) = F;N)(~(N)*; t) 
(4.9) 

-i&?~)(k) FjN)(dN); t) = F,j”‘)(dN); t). 

We stress here the operational meaning of the asterisk used to differentiate the change 
in phases due to intersubsystem interactions (collisions) and that due to intrasubsystem 
interactions (collisions). 
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With (4.8) the collision integral takes the form, 

C fi Fj$ = C[FiN’] = 6 s dr(N-s)[Fo(N’(.x(N)*; t) - @)(xcN); t)]. (4.10) 
I I !3=1 

It is now possible to show that the integral over the phases is finite in the limit E + +O, 

where the notations for the various symbols on the right hand side of (4.10a) are 
defined in Appendix. We simply note that this is an N-body extension of the three- 
body phase integrals discussed previously by the author [18]. Here b is the N-body 
analog of the impact parameter and dQ,,, the N-body analog of the solid angle in 
two-body collisions. 

Equation (4.10a) implies that the phase volume representative of non-virtual 
collisions of N particles made up by v subsystems grows linearly with respect to time 
on the time scale on which E has a meaning. 

This result can be verified for lower order collisions by using the cluster expansion 
discussed previously and mass-normalized coordinate systems [ 181 for many-particle 
collisions. The energy conservation law must be imposed on the collision of sub- 
systems, since otherwise the collision may be virtual. A more systematic investigation 
will be made of (4.10a) especially in connection with density expansion in future. 
At the moment it is sufficient to know that the integral is finite. 

Now, we define the entropy S(t) such that 

S(t) = -k, i V-” [ dr,(s)F,(s)(x(s); t) log F,‘“‘(x’~‘; t) 

where riS) collectively denotes the phases of subsystem c11 and k, the Boltzmann 
constant. We regard FL*’ as belonging to the O-class functions. Then by using (4.10) and 
the kinetic equation (2.36), we obtain the following inequality: 

= i $ @ $ dr,‘“‘C fi F,$‘) [ 1 log F:‘) 
a=1 8=1 

l-j1 F,(“‘(x M *; t) - fi Fd(s)(~y(s); t> 
tY=l > 0. (4.12) 

Here Eq. (4.10a) is understood for the phase integral. We have followed the well- 
known procedure on the original H-theorem in order to obtain (4.12). This is a 
generalized H-theorem for correlated macroscopic systems which can be described 
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by the kinetic equation (2.36), provided that the distribution function belongs to 
the O-class functions. The equality holds only when 

fj F,(J)(+)-; t) = fi F,(“)(.J”); t) (4.13) 
n=l 

or 

ugl log FLFk”’ = constant in time. 

Equation (4.13) implies that FAN) consists of constants of motion, H = ~~=, Hi’), 
P = XL=1 X:=1 Pj , A4 = FL, m, . Moreover, the unique solution to (4.13) is 

= exp[-&lZ(P, r; u)](QN!)-’ (4.14) 

where 

&“N’ exp I ‘j - m3’u I2 + ” i 
2tnj 

Vj, . (4.15) 
lid 

Here 8 = k,T, k, being the Boltzmann constant. The solution of (4.13) follows the 
standard procedure in kinetic theory by making use of the definitions of the macro- 
scopic variables p, u and the kinetic temperature [see Eq. (5.18) below for the definition 
of kinetic temperature]. The distribution function given above is simply the local 
equilibrium distribution in Gibbs’ ensemble, when N and s are large. This form of 
distribution function arises uniquely as a consequence of the H-theorem for the 
kinetic equation (2.36). Within the validity of the approximation 

where HL”’ is the Hamiltonian of the subsystem 01 of s particles which is “charged,” 
the function S(P, r; u) in (4.14) may be replaced by 

H = H(P, r; u) 

Thus, it is consistent to define 

(4.16) 

When (4.14) is combined with (4.16), some allowance must be made regarding the 
meaning of N, since if the N is rigorously meant for the total N of the system which 
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is isolated, then there arises a conceptual difficulty with (4.14), since the energy of 
the entire system is fixed at a value. Therefore, it is important to remember that 
since FAN) is a product of &$“s which are canonical distributions at equilibrium, it 
is only valid in the limit of large N and s as well as v and if such a large system is in 
equilibrium with still another subsystem. A similar situation arises in Boltzmann’s 
theory, since the total distribution function may be written as ny=, Fjr) and Fjl) are 
exponential functions of the kinetic energy at equilibrium. 

This way, the present kinetic theory is seen to put a bridge between kinetic theory 
of dense fluids and the equilibrium statistical mechanics of Gibbs and consequently 
thermodynamics of nonideal fluids. This conncetion has been lacking so far in many 
existing kinetic theories of dense fluids and constitutes an important result of the 
present kinetic theory. From this viewpoint of irreversibility one can set aside all the 
subtle points regarding the “derivation” of the kinetic equation (2.36) and regard 
it as a conjecture that connects kintic phenomena to thermodynamics and also enables 
us to develop the theory of transport processes for dense fluids. 

At complete equilibrium, u = 0. Then, we have 

FtN) = e-“‘/QN!, 
0 H = H(P, r; 0), (4.17) 

which, when used in (4.1 l), gives rise to the entropy formula of the system at equi- 
librium. It is trivial to verify this statement. We will further elaborate the discussion 
along this line later when solution of the kinetic equation is discussed. We now turn 
to other properties of the collision integral. 

The collision integral C[nicl t;;“‘] has five right eigenfunctions at zero eigenvalue, 
i.e., the integral equation. 

is solved by M, P = (P1 , P, , P,), and H. If we put 

(4.18) 

and FAN’ is given by (4.17), then it is easy to show that (4.18) holds. We simply note 
that the argument for the proof goes similarly to what was used for (4.8) and (4.10) 
and that & are collisional invariants, which do not change due to collisions of v 
subsystems. 

The left eigenfunctions for zero eigenvalue of C[& Fi”l are given by 

#L ={#LM> +LP, $LH) (4.21) 
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where 

7/tLM = v i m&r, - r), 
j=l 

(4.22) 

+Lp = v i PJ(rj - r) 
j=l 

(4.23) 

(4.24) 

We prove [20] the above statement with the example of energy density. The proofs 
for others proceed similarly. 

By using the definition of energy density (4.3), we obtain 

By virtue of the symmetry of Tlz..,” with respect to the interchange of subsystems and 
the fact that for a large s the sum of the subsystem energies is equal to the total 
energy of the system, we may write 

(4.26) 

where Tf,..., is the adjoint of Tlz...” and the prime on the summation sign means that 
the intersubsystem interactions are excluded so that the operand in (4.26) is the energy 
density of the entire set of subsystems separated from each other (and thus mutually 
independent). This interpretation is consistent with (2.8) and (2.9). Since the energy 
of the system must be conserved, the left hand side of (4.25) must be equal to zero 
[20]. Since the distribution function is positive definite, we conclude that 

(4.27) 
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for which we have used (4.26). This means that #LH is left eigenfunction of the collision 
operator in (2.36), i.e., 

This is the necessary condition for the energy E(r, t) to conserve. It means that the 
total energy of the system observed at r is a collisional invariant. This must be true 
since from the viewpoint of an observer located at point r the total energy of the 
system must be the same before and after the collision of v subsystems, the effect of 
which will be displacements of particles and changes in velocities of particles without 
changing the total energy of the system as a whole. Therefore we also see that (4.27) 
is the sufficient condition for 

dHr, t> o 
-iiF-=. 

This proves that $LH is an eigenfunction of the collision integral for zero eigenvalue. 
In fact, an equivalent argument can be made with (4.10) which makes it quite obvious. 
Similar arguments apply for other components of #L . These properties will be used 
for deriving macroscopic equations for the system from the kinetic equation (2.36) 
presented above. 

V. MACROSCOPIC EQUATIONS OF CHANGE 

The kinetic equation (2.36) can be used to derive macroscopic equations of change 
for density, momentum and energy. We first note that 

s 
where i = M, P, H [see (4.20)-(4.24)]. 

By multiplying #LM from left on (2.36) and integrating the resulting equation over 
I!:“, we obtain the equation of continuity: 

i p(r, t) = V-” s dI’$ fi mjS(rj - r)(-i) ~~)F~‘)(x(~); t) 
j=l 

+ V-‘j.dI’ % i m,S(rj - r)(-i) C fi F,‘” . 
j=l [ 1 64 

The second term is equal to zero by (5.1) and the first term is easily calculated: 

First term = T/-” . P$(r, - r)] E;“‘(x’~‘; t) 
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where the property of delta functions and the definition of momentum (4.1) have been 
used to obtain the second equatlity. Note that the interaction term in dpj;l) simply 
integrates to zero. By combining the two equations above, we obtain the equation 
of continuity 

(5.2) 

or if substantial derivative, 

(5.31 

is used, we have 

J!f = -pa . u(r, t) 
Dt Lk ’ (5.2a) 

In order to obtain the equation of change for momentum, we multiply #Lip on (2.36) 
from left and integrate it over r, . (‘I Since the collision integral contributes nothing on 
integration according to (5.1), we obtain 

$ p(r, t) u(r, t) = --iv-’ J d~~s)+Lp$R,(s)(x(s); t). (5.3) 

The right hand side contains kinetic and potential parts. The kinetic part may be 
calculated as below: 

= -- fr . V-” / dT$ ‘fl F 6(rj - r) F~s)(x(s); t) 
3 

a = --. 
ar uup - ; * 9, (5.4) 

where 

the kinetic part of stress tensor. The potential part is given by 

Z -  -  : v2Vms f dr,‘“’ $?& $$’ * 1 [S(r, - r) - S(r, - r)] F~‘)(x(‘); t ) .  

3 
(5.6) 
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Since [22] 

where 

S(rj - r) - 6(r, - r) = (rj - rJ * g 9Ji(rk - r) 

gjk = t (- ljn [ (rj - rJ . t]“. 
n=O (n + l)! 

the right-hand side of (5.6) takes the form, 

a B,, --. ar (5.8) 

where 

9, = - i vzV+ J” dr,‘“’ $iF 2 (ri - rk)[9&rk - r)] F,(~)(x(“); t). (5.9) 
3 

(5.7) 

By combining (5.4) and (5.8) with (5.3), we-obtain the hydrodynamic equation, 

+p”=-;.[““p+B] 
where 

9 = PK + 9, 

or in the substantial derivative form, 

(5.10) 

(5.11) 

(5.1 la) 

By integrating (5.9) over particle phases j and k and making use of the symmetry 
with respect to particles, we may rewrite (5.9) in the form 

9 
0 

= _ 1 y2s(s - ‘1 
2 V2 s 

dx dx 
1 (5.12) 

where 

J;dXl--% ; t) = V-“+’ j” dx, ... dx, F,(‘); rzl = r2 - rl . (5.13) 

Therefore, in the thermodynamic limit 

gp, = +I, dx, dx, 2 r12W2& - M&1x2 ; 0, (5.13a) 
1 

since vzs(s - 1)/P = N(fV - v)/Vz -+ n2. We observe that this form for b, leads 
to the familiar potential contribution [21] to the pressure if the system is at equilibrium. 
This definition for B, is also consistent with that by Irving and Kirkwood [22]. 
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The energy transport equation can be derived by multiplying z,& on (2.36) and 
then integrating over r, . w The collision term again vanishes and we obtain 

By using a procedure similar to those for other equations of change, we obtain the 
following equation: 

; w-2 t> + $ uE(r, t) = - g . (q + u . g?) (5.14) 

where 

4 = QK + 90 (5.15) 

qK = v-” 1 dr,(“)v i i mj 1 2 - u I”($ - u) 6(r, - r) F,‘“‘(.x’“‘; t), (5.16) 
1-l 3 , 

qv = V-” 
s 

dr,‘“‘; fx [(PJn?,) - u] 
I#!+ 

x Vjlc(rj - r) - rjlc [ 
a vj, 
ar. SBjk] S(r, - r) E;‘“‘(x’“‘; f), (5.17) 

3 

These definitions are also consistent with those by Irving and Kirkwood [22]. 
Lastly, we present the equation of change for kinetic temperature. Since the proce- 

dure is the same as for the other, we will simply give the result only. 
Kinetic temperature is defined by 

jnk*T = v- ”  
/  G %  g1 

$llj ((Pj/!!Ij) - U I2 S(rj - r) F,(“)(X(“); t). 

Then we obtain the equation of change for T 

;(;nk,T) = -g.(; nkBTu + qK + qu,) - c+’ . $ + CT 

where 

(5.18) 

(5.19) 
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In the substantial derivative form 

n & (; k,T) = -9 : g - $ * (qK + qu,) + CT. (5.19a) 

Since the kinetic energy is not conserved, the collision integral does not disappear. 
This is the reason for the presence of C, in (5.19) and (5.19a). 

VI. SOLUTION OF THE KINETIC EQUATION 

The kinetic equation (2.36) must be solved in order to calculate various transport 
coefficients for dense fluids. 

The equation is highly nonlinear and is defined in a 6N-dimensional space. Certainly, 
the most difficult problem resides in the transition operator T12...” which is an N-par- 
ticle operator whose precise structure and functional dependence on collision para- 
meters are not known to all orders of density. In view of these difficulties and in order 
to gain some insights into the problem, we shall study the solution of (2.36) in the 
crudest approximation, leaving a more systematic and mathematically satisfying 
investigation to the following paper. The present study at least enables us to investigate 
the density dependence of some transport coefficients without being unnecessarily 
encumbered by the complex molecular interaction effects which a more rigorous 
solution method would inevitably be compelled to include. The present solution 
method, albeit limited, can show the density dependence of kinetic parts of transport 
coefficients in a rather concise manner and also demonstrate the general features of 
the collision integral appearing in this theory. 

Since the O-class function is shown to fulfil the H-theorem for the kinetic equation 
and the function at equilibrium is the canonical ensemble distribution function, 
we may expand the distribution function Fis’ into moments around the equilibrium 
solution of the kinetic equation. That is, 

F,(“)(x(“); t) = F,(i) a, + a,: i [WfWj]‘“’ + a0 
j=l 

. ,$ Wj(Wj’L - 8) + “‘1, (6.1) 

(6.2) 

(6.3) 

(6.4) 
wj = (~)““(~ - u) 
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and ai are constants which can be determined by the procedure in the moment 
method [23, 241. They are 

a, = 1 

8 m 3/2 
a,=5 3 ( 1 

p-lqK = SK ) (p = nm, m = m,). 

Therefore, the distribution function to thirteen moments is 

(6.5) 

This mode of expansion does not include the potential contributions, the neglect of 
which would limit us to calculations of kinetic contributions to various transport 
coefficients. When Fj’)‘s are multiplied out for all 01, the distribution function for the 
whole system is given in the form, 

F(N) = FiN) 1 + iii,: 5 [WjWj]‘2’ + 9, . 2 Wj(Wj2 - Q) + . ..). 
i 

(6.6) 
j=l j=l 

The equations of change for gK and qK can be obtained by the standard procedure in 
the moment method. We only present the results below: 

and 

where @ is the unit second rank tensor and [IOe] 

= 

(6.7) 

(6.9) 
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and 

CJqJ = -iV J dTi’)v f i mj I$ - u I”(2 - u) S(rj - r) C [fi Fj”]. 
,=l 3 6=1 

(6.11) 

These collisional contributions can be witten in terms of analogs of the 1;2 integrals, 
if the tensorial characters of the collisional contributions are taken into consideration. 
Since Ct must be a symmetric traceless tensor of second rank, and C, a tensor of 
first rank, we see that they must be in the following forms: 

where 

Ct[&] = w;lb, + W;1[z?K2K](2) + w;yB, .8,]‘“‘, (6.12) 

ch4Kl = w;lqx + w&c2x . Ii, , (6.13) 

-1 2 - 
Wl =G V ‘j- dr,‘“’ V j$l [WjWjlc2) 6(r, - r): C FO(N) f [WiWilt2) 1 (6.14) 

i=l 

,$ = ; ($-) V-” 1 dr,‘“‘v ;I mi[WjWjJ’*) S(r, - r): C FiN) f f [WfWjJ” 
i=l j-1 

X ( Wi2 - g)( Wj2 - &) 
1 
, 

w3 
-l = ; (A)" V-" j  dr,("$ i mj Wj26(rj - r) C FdN) t f Wi”Wj” 

i=l j-1 1 
-1 

w4 = & (s)3’2 VP” s dTi’)v il t mi 1 5 - u I”(% - u) S(rj - r) 

x c p 2 Wi( w: - C)] 
i=l 

and 

-1 ~ wg -- : V-” j @“,, i ! Il,j j=12 l~~-U~2($-.)SCrj-r~ 

X C 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

with C[Fr,“‘X] denoting (4.4) with &F”’ replaced by FAN’X and multiplied by -i. 

GK 
The equations of change (6.7) and (6.8) may be solved approximately by expanding 
and qK into series of uniformity parameter after multiplication of the parameter 

to all the derivatives in the equations. Then to the lowest order in uniformity para- 
meter the solutions are as follows: 

&+’ = 2ne 
c^U (2) 

h w1 ar L-1 
(6.19) 
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and 

q2’ = g!$ aT 
B 

w4z. (6.20) 

Therefore, by comparing these equations (6.19) and (6.20) with phenomenological 
constitutive equations 

and 

we obtain the kinetic parts of viscosity and thermal conductivity coefficients: 

rlK = -nkBTw, = 5k,TI(F: F)-l (6.21) 

and 

h = -2nkB2T 
I< 75 kB2Tz(w . ?A)~’ 27% = 8 

where 

I(5 : S) = [WjWjf2) s(rj - r): c F(y) : [WiWilC2) 1 (6.23) 
i-l 

and 

I(u .v) = j$ J dr(‘)v i i mjWj2WjS(rj - r) . c pi”’ f Wi c Wt - $1. 
j=l i=l 

(6.24) 

Here we emphasize that (6.23) and (6.24) are not two-body integrals, since C(x) is 
a many-body collision operator. Since the N-body collision integral is density- 
dependent in general, the transport coefficients are now density-dependent. Therefore, 
we see that (6.21) and (6.22) can go beyond the Chapman-Enskog results. In fact, 
if the binary collision approximation is made to the collision integral C[x], (6.21) 
and (6.22) lead to the Chapman-Enskog first approximation [25]. Therefore, it is 
reasonable to state that (6.21) and (6.22) are dense gas generalizations of 
the Chapman-Enskog results. We will further discuss this aspect of (6.21) and (6.22) 
below. 

The integrals (6.23) and (6.24) may be written in the form 

(6.25) 
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for which we have made use of particle and subsystem symmetry properties of C[*.*]. 
Then by making use of (3.40) and (3.41), we may write Zj in the form, 

Since the particles are equivalent, we obtain 

where 

Z(a 0 a) = (1”’ + nZt3) + *-*) 9 0 (6.27) 

and 

I(‘) = i 1) p-1 s 
dx 1 -..dxzsal 05 l,s+l kP) i ai] (6.28) 

zc3) = i 1) p-1 I 
dx 1 -** dx3,al 0 7 l .s+1.2s+1 [,," ,g ai], (6.29) 

etc. 

Therefore, we finally have for the kinetic parts of shear viscosity and heat conduc- 
tivity, 

and 

r)!f = Jg [ 1 + n(Z,(3)/1,(2)) + ***1-l (6.30) 
77 

A, = ; k,2T(z,‘2))-1[l + n(Z,(3)/1,(2)) + . .*I-‘, (6.31) 

The structures of these results are faintly reminiscent of the kinetic parts of transport 
coefficients in the Enskog theory of dense gases [ lOe]. The density corrections are due 
to higher order collisions. For example, 1:) and Zi3) represent three-body collisions. 
These terms make a correction linear in density. 

VII. SUMMARY AND DISCUSSION 

In this paper we have presented a kinetic equation for dense fluids for which there 
exists an H-function the time derivative of which is negative semidefinite. The equilib- 
rium solution to the kinetic equation is shown to be canonical and this solution is 
unique. We have derived various conservation equations from the kinetic equation. 
It is also solved in a moment method by which the kinetic parts of viscosity and heat 
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conductivity are calculated. The transport coefficients obtained are formally shown 
to have density expansions in which the leading terms are the Chapman-Enskog 
results for the transport coefficients. The first order density correction terms are made 
of three-body collision integrals. We have not attempted their numerical evaluations 
here. 

The kinetic equatiop presented in this paper is reminiscent of the Boltzmann 
equation in many respects. The basis of “derivation” of the kinetic equation is the 
viewpoint that the Boltzmann equation for singlet distribution functions is simply 
an element-in fact the lowest order element-of an invariant subset of equations 
whose structures stay invariant as the number of particles is increased in the apparently 
identicalsubsystems comprising the whole system of a macroscopic size.The subsystems 
are viewed sufficiently large in the thermodynamic limit so that the macroscopic 
Hamiltonian for an interacting system is approximately the sum of the subsystem 
Hamiltonians. Therefore, the kinetic equation (2.36) includes the original Boltzmann 
equation as a special case, i.e., the low density limit, if the subsystems contain one 
particle each and when the collision operator T12...N is approximated by two-body 
collision operators in the low density limit. If three-body terms are retained, the kinetic 
equation resembles the kinetic equation proposed by Hollinger and Curtiss [13]. In 
fact, if the N-body collision operator T12...N is expanded in the cluster expansion [ 151, 
then the resulting equation may be looked upon as the generalization of the Hollinger- 
Curtiss equation to an arbitrary order in density. However, these equations do not 
give rise to correlation effects and consequently are not very useful for dense fluid 
studies. The correlation effects are fully retained if the number of particles in sub- 
systems is sufficiently large in Eq. (2.36). 

However special a type of equation it may seem, the kinetic equation certainly 
gives us a way to make a connection between the kinetic theory initiated by Boltzmann 
and the Gibbsian equilibrium statistical mechanics (thermodynamics) for dense fluids. 
In this sense there seems to be a great deal to hope for with the kinetic equation 
presented. The Chapman-Enskog type solution method is applied and transport 
coefficients are formally obtained in the following paper. They are formally in agree- 
ment with the transport coefficients obtained by linear response theory for thermal 
phenomena except for the collision operator replacing the Liouville operator in the 
evolution operator exp(-its) in the correlation functions. Note, however, that the 
two operators are intimately related to each other. 

Before we close this paper, there are a few remarks to make. Firstly, our assumption 
on the existence of the collision operator T12...Jz) may appear a little far-fetched at 
first glance, but we note that such an assumption is not without a precedent in many- 
body problems. For example, in linear response theory it is common to assume that 
the many-body evolution operator exp(--itZ) has mathematical meanings, being 
defined in an appropriate space over a sufficiently long time duration. It has also the 
resolvent operator (9 - k-l, E > 0, which is assumed to satisfyzs the Lippmann- 
Schwinger equation. This assumption is not basically different from the assumption 
on the existence of the collision operator. Therefore, the assumption is not a radical 
departure from the common,,practice in modern statistical mechanics. Secondly, we 
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note that there are some studies available in the literature regarding the H-theorem for 
moderately dense gases [29] and correlated systems [30], based on either the BBGKY 
hierarchy [29] or the generalized master equation obtained from the Liouville equation 
by projection [30]. The kinetic equation used here in the present study is entirely differ- 
ent from those in the references cited. Lastly, in the proof presented for the H-theorem 
Eq. (4.13) has arisen as the equilibrium condition which leads to the canonical distri- 
bution function. This condition can be obtained also somewhat differently from the 
viewpoint of collisional invariants. Physically, the collision operator T12.Jz) describes 
the rate of change in the quantity on which it operates. Since at equilibrium the left- 
hand side of the kinetic equation (2.36) must be equal to zero, we have 

TIz...,(z) fi FjR) = 0, 
b-=1 

that is, the operand is a collisional invariant at equilibrium. This implies Eq. (4.13) 
quite naturally. It also means that niCI Fj*’ must be an (exponential) function of the 
basic collisional invariants such as the energy, momentum, and mass. 

APPENDIX 

In this Appendix we show (4.1Oa). The problem is to express the phase volume 

dr’N’ = dr(s) &TN-s) (A.11 

in such a way that it exhibits as clearly as possible the collision of the N-particle system 
and also it reduces to simpler known forms when the N-body scattering is approxi- 
mated by two-, three-body scattering, etc. 

Since the whole system is divided into v s-particle subsystems, the particles are 
numbered consecutively as 1, 2 ,..., s; s + l,..., 2s;...; (V - 1) s + I,..., vs. Let us 
denote the coordinates of particles in an arbitrary frame by rl , r2 ,..., rN . 

Then it is convenient to introduce new coordinates such that it is possible to discuss 
collisions in the most economic way. For this purpose it is useful to construct the 
“mobile” diagram proposed by Jepsen and Hirschfelder [31] as follows: 

4 s 

5 

2 

:'c 

-- -JJ 
3 s-l 

i 
6 

(a) 

2s st4 

etc. 

(b) 
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Corresponding to these “mobile” diagrams are the new coordinates defined by 

Qk = ( mGz: )1’2 (rk+l - rrk) 

i 
mk+l 

= MkMle+l 
m.drkil - 59 

where 

and 

r - ML’ i miri , ck - 
j=l 

and k denotes the indices, 1, 2 ,..., s - I, s + l,..., 2s - 1, etc. Therefore, the center 
of mass coordinates of the subsystems are given by 

Qs = K112 2 mMirj , etc. 
j=l 

(A.31 

Then, we construct a “mobile” diagram with QS , QSS ,..., QVS as follows: 

where the line [N--v+l means the relative distance between the center of mass of the 
(V - 4)th subsystem and the center of mass of the previous four subsystems combined 
together. These relative distances are defined by 

and 

where 

‘tN--v+k = (-jf+)“’ ,$ Mv-f+dQ(v-,), - Q(v-j,s) G4.4) 

(A.9 
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Therefore, fN is the center of mass coordinate of the system as a whole and tN-r 
pertains to the relative distance between the centers of mass of the subsystem 1 and 
the rest of the system. 

Now we rearrange coordinate indices and define coordinate ti for the rest of degrees 
of freedom as follows: 

{Qws+l 2.s.) Qsv-1: => {El >..., 6,-l> 
{Q(v--2)s+l ,..., Qtv-1)s~d * bus ,..., &s-z> 64.6) 

fQ 1 ,..., Qs-d 3 @L--s+1 ,..., ~N-J, 

so that we finally have a set of N.$ vectors. 
It was shown by Jepsen and Hirschfelder [31] that the kinetic energy is diagonal 

in this coordinate system, i.e., 

where 

Therefore, it is possible to regard the momentum in the center of mass coordinate 
system in which j, = 0, as (3N - 3) dimensional column vector in (3N - 3) dimen- 
sional orthogonal space. 

With the coordinate system thus defined as above, we can express the phase volume 
in a manner analogous to the phase volume in a two-body problem. For this purpose, 
we introduce the following hyperpolar coordinates [32]: 

t3N-3 = p cos e,,, 
.$3N-4 = p sin e3N-4 cos e3N--5 
&N-5 = p sin e3N-4.sin e3N-5.~~~ e3N-6 

3N-5 

f2 = p n (sin &.&3-i) cos 8, 
i=l 

3N-4 

fl = p n sin t&N-& 
i=l 

(A.71 

where 
3N-3 

P 2 = z1 Si” 64.8) 
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and 0, are the hyperpolar angles, 

(j = 2,..., 3N - 4) 

In fact, p2 is the (N - 1) particle analog of the moment of inertia. 
It is useful to define the generalized impact parameter b by 

= p sin e3N-4 . (A.91 

It is instructive to note that if we define generalized angular momentum [33] A by 

A,, = &Pj - Pi.&, (i,j = 1, 2 ,..., 3N - 3) (A. 10) 

then the kinetic energy may be written as 

A2 T = -!- p,2 + ~ 
2P 2cLP" 

(A.ll) 

where (1 is the absolute value of the generalized angular momentum and P, the 
“radial momentum” conjugate to p. The kinetic energy as given by (A. 11) is completely 
isomorphic to the kinetic energy for two-body problems. 

Then the phase volume in the hyperpolar coordinate system can be written as 

3N-4 
dr’N’ = dr’C’ p3N-4 zg (sin ep dp de, .‘. de3N-4,dP(N-i) (A.12) 

where 
dPtN-l’ = dP, dP, **. dP,+, . 

It is possible to put dl” cc) = 1 in the center of mass coordinate system. 
If we make use of the hypercylindrical coordinate system, which is more suitable 

for our purpose here, we have 

&TN-l’ = dr’N’/d~‘C’ 

3N-5 

= b3N-5 n (sin &)i-’ df3N-3 db de, .** de,,, dP’N-l’ (A.13) 
i=2 

where (A.7) and (A.9) are made use of. 
Since we can assume that the relative vector of approach between the subsystem 1 

and the rest is parallel to the fN-3 axis, it is possible to express d[3N-3 in the form, 

de,,, = / P 1 p-l dt = 1 P / p-l 7-l = 1 p I p-1,-1 (A.14) 

if the time is sufficiently large so that the collision is finished between the subsystem 1 
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and the rest of the system, where T is the collision time. Then we obtain in the limit 
c++o 

E 
s 

dr@’ dT’N-s’/dI”c’ = I 
db di&,, b3N-5 1 P 1 p-l 1.1 (A.15) 

where 
3N-5 

d23,, = n (Sin 6,)-l de, ..* dti,,, . 
id2 

(A.16) 

This is the result used in (4.lOa) and an extension of the result obtained for the three- 
body problems previously by the author [18]. 
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