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1 Intro

Let us consider a particle system where the number of constituents may vary, due to birth or death
events. For the case of N particles, we denote by fN({~xi}, {~vi}, t) the probability density of finding each
of these particles at position xi, velocity vi and within a volume d~xi, d~vi in phase space. Since the number
of particles may change, N is also a variable. Conservation of probability requires that particles is all
N -ensembles must satisfy

f0(t) +

∫ ∞
N=1

∫
fN({~xi}, {~vi}, t)dΩN = 1 (1)

where ΩN = dx1 . . . dxNdv1dvN . Each of the fN functions obeys its related Liouville equation

∂f (N)

∂t
+

N∑
i=1

[
÷xi

(ẋif
(N)) +÷vi

(v̇if
(N))

]
= 0. (2)

In the prion model we have a pool of folded monomers that are unable to aggregate but that can
transition into a pool of unfolded ones that instead can form clusters. The transition is reversible but
rates are not symmetric so that transitioning into the unfolded state is a much rarer event than returning
to the folded state. However, it is in the misfolded state that homogeneous nucleation can occur. We
thus denote by n∗1 the number of folded proteins and by n1 the number of misfolded ones. Similarly we
denote by nk>1 the number of clusters made of misfolded proteins. We denote by P (n∗1, n1, n2, n3, . . . , nN)
the probability distribution of having a state in the {n} = n∗1, n1, n2, n3 . . . nN configuration where N is
the maximum cluster size. We can thus write the following Master Equation:
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dP ({n})
dt

= −γ∗n∗1P ({n}) + γ∗(n∗1 + 1)P (n∗1 + 1, n1 − 1, n2, n3 . . . )−

γn1P ({n}) + γ(n1 + 1)P (n∗1 − 1, n1 + 1, n2, n3 . . . )−[
pn1(n1 − 1)

2
+ p

N−1∑
i=1

n1ni + q

N∑
i=2

ni

]
P ({n}) +

p(n1 + 2)(n1 + 1)

2
P ((n∗1, n1 + 2, n2 − 1, n3, . . . ) +

q(n2 + 1)P (n∗1, n1 − 2, n2 + 1, n3, . . . ) +

p
N−1∑
i=2

(n1 + 1)(ni + 1)P (n∗1, n1 + 1, . . . , ni + 1, ni+1 − 1, . . . ) +

q
N∑
i=3

(ni + 1)P (n∗1, n1 − 1, . . . , ni−1 − 1, ni + 1, . . . ).

(3)

1.1 Within Becker-Doering

The same model can be considered through a BD framework. The relevant equations are

ċ∗1(t) = −γ∗c∗1 + γc1

ċ1(t) = γ∗c∗1 − γc1 − pc21 − pc1
N−1∑
j=2

cj + 2qc2 + q
N∑
j=3

cj

ċ2(t) = −pc1c2 +
p

2
c21 − qc2 + qc3 (4)

ċk(t) = −pc1ck + pc1ck−1 − qck + qck+1

ċN(t) = pc1cN−1 − qcN

where the initial conditions are c∗1(t = 0) = M and ck(t = 0) = 0, for all k. The dynamics are such
that p � q and that γ∗ � γ: transitioning into the misfolded state occurs over slower timescales than
transitioning back into the folded state and similarly attachment of the misfolded clusters is slower than
detachment. The goal of this work is to find, for example cluster configurations and the mean first time
of reaching a cluster of size N .
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2 The first passage time

In this section we consider the simplified case of homogeneous nucleation when γ∗ → ∞ and γ = 0, so
that we can assume that at time t = 0 all the mass is in the misfolded state so that n∗1 = 0 and nk = Mδk,1
and there is no coupling to the folded reservior. To illustrate the method we will use to calculate the
first passage times we consider the very simple, yet illustrative case of M = 7, N = 3 where the entire
dynamics is represented by

(7, 0, 0)

↓↑

(5, 1, 0)

↓↑ ↘↖

(3, 2, 0) (4, 0, 1)

↓↑ ↘↖ ↓↑

(1, 3, 0) (2, 1, 1)

↓↑ ↘↖

(0, 2, 1) (1, 0, 2)

(5)

and where we have omitted the n∗ configuration. If we are interested in the first passage time to completion
of an N -mer, a maximal cluster, we can consider the survival probability S(n1, n2, n3, t) which is the
probability of having survived up to time t, given an initial configuration {n1, n2, n3} out of the completed
state. In this case we have the constraint S(n1, n− 2, n3 > 0, t) = 0.

The equations for the survival probability S(n1, n2, n3, t) can be written in terms of the backward
Kolmogorov equations which in this case are

dS(7, 0, 0)

dt
=

7 · 6
2

[S(5, 1, 0)− S(7, 0, 0)], (6)

dS(5, 1, 0)

dt
= q[S(7, 0, 0)− S(5, 1, 0)] +

5 · 4
2

[S(3, 2, 0)− S(5, 1, 0)] + 5[S(4, 0, 1)− S(5, 1, 0)], (7)

dS(3, 2, 0)

dt
= 2q[S(5, 1, 0)− S(3, 2, 0)] +

3 · 2
2

[S(1, 3, 0)− S(3, 2, 0)] + 3 · 2[S(2, 1, 1)− S(3, 2, 0)],(8)

dS(1, 3, 0)

dt
= 3q[S(3, 2, 0)− S(1, 3, 0)] + 3[S(0, 2, 1)− S(1, 3, 0)], (9)

where we have assumed that time is now renormalized so that p = 1 and q is unitless. These equations
can be numerically solved as a set of coupled ODEs. Note that some terms are zero, for example
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S(2, 1, 1, t) = S(0, 2, 1, t) = S(4, 0, 1, t) = 0 due to our quest for the first passage time to any cluster of
size N = 3. The solution to the above ODEs will lead to the full survival distributions. If we are only
interested in the mean first passage time T , starting from configuration {n1, n2.n3} we can recall that

T (n1, n2, n3) = −
∫ ∞
0

t
dS(n1, n2, n3)

dt
dt =

∫ ∞
0

S(n1, n2, n3)dt = S̃(n1, n2, n3, s = 0) (10)

where the first equality is obtained via integration by parts and where S̃(n1, n2, n3, s) is the Laplace
transform of S(n1, n2, n3, t). If we now denote by S(s) the vector of all Laplace transform survival states
such that

S(s) = (S̃(7, 0, 0, s), S̃(5, 1, 0, s), S̃(3, 2, 0, s), S̃(1, 3, 0, s))> (11)

and take the Laplace transform of Eqs. 6-9 we find

sS(s)− (1, 1, 1, 1)> = MS(s) (12)

where (1, 1, 1, 1)> are the initial condtions of survival probabilities being unity if n3 6= 0 in all states in
S and where M is the matrix associated to Eqs. 6-9 so that

M =


−21 21 0 0
q −(15 + q) 10 0
0 2q −(9 + 2q) 0
0 0 3q −(3 + 3q)

 (13)

Finally, since we are interested in the case of s = 0 we can also write

S(s) = −M−1 · (1, 1, 1, 1)> (14)

which can be solve by inverting M to find

T (7, 0, 0) =
1

21
+

1

15
+

q

315
(15)

T (5, 1, 0) =
1

15
+

q

315
(16)

T (3, 2, 0) =
1

2(3 + q)
+

q

15(3 + q)
+

q2

315
(17)

T (1, 3, 0) =
1

3(1 + q)
+

q

2(1 + q)(3 + q)
+

q2

15(1 + q)(3 + q)
+

q3

315(1 + q)(3 + q)
(18)
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