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ABSTRACT. We consider a system of self-propelled agents inter-
acting via pairwise attractive and repulsive Morse potentials and
subject to gaussian noise in two dimensions. Earlier work showed
that depending on interaction parameters, a catastrophic and an
H-stable regime could arise, with diverse aggregation morphologies
including mills, rings, clumps, flocks in the catastrophic regime and
rigid body rotators and flocks in the H-stable one. Here, we con-
sider both regimes and investigate the role of noise in promoting
transitions between patterns, and in causing swarm disassembly.
We find that within the catastrophic regime increasing noise in-
tensity leads to a first order transition between translational flocks
and compact stationary swarms and yet higher noise levels lead to
swarm breakup. Within the H-stable regime instead we find ....
Hysterisis.

The aggregation of self—propelled particles into coherent patterns is a
ubiquitous process found in many chemical, physical, biological, and en-

gineered systems [1]. Patterns may be static or dynamic and may arise
over several spatio—temporal scales. For example, interacting droplets
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or ferromagnetic particles floating on fluid layers may form ordered
structures [2, 3], organic molecules adsorbed on surfaces may self as-
semble into monolayers [!] while actin filaments, cells, myxobacteria
and flagellated bacteria may form colonies, swarms or biofilms [5, 6, 7].
Interactions among members of these ensembles may be electrostatic,
chemotactic, hydrophobic, electromagnetic, of Van der Waals type, and
may also depend on the surrounding environment or cell culture.

More complex organisms such as insects, animals and humans also
self-assemble, forming schools of fish, flocks of birds, locust swarms, or
moving crowds that have inspired a new generation of mathematical
modelers. In all these systems, agents organize following direct visual,
tactile, auditory or other sensory couplings, giving rise to coherent bod-
ies that may impart protection, enhanced mobility or other advantages
to their members.

As our understanding of biological and biologically inspired self-
assembly increases there is also great interest in applying this knowledge
to design and create non—biological inanimate systems with novel prop-
erties and control possibilities [11]. Swarms of multiple, task-specific
entities, such as unmanned land vehicles, search robots, underwater
gliders, aerial drones have been tested. Expanded fabrication capabili-
ties at the nano and mesoscale levels may also lead to the possibility of
creating swarming nanostructures to monitor the presence of pathogens
in seawater [12], or for biomedical purposes within the human body [13].

Beginning with the seminal work of Viczek and collaborators in the
mid-ninties, and using the basic ingredients of direct interaction among
agents, self-propulsion and the absence of central coordination, many
discrete, rule-based, kinetic and hydrodynamic models have been pre-
sented. Some of these descriptions have considered idealized, portable
swarming systems, while others have focused on specific organisms or
vehicles, introducing ad—hoc behaviors, experimentally derived param-
eters and validated field testing.

One of the most studied discrete models within the swarming liter-
ature was initially introduced in Ref.[1] and is characterized by a set
of individual self-propelled particles interacting via repulsive—attractive
potentials. The model has been studied in detail [15, 16, 17] and several
characterizations of morphologies and ensemble behavior as a function
of parameter choices, noise and external fields have been presented,
both in two and three dimensions [19, 20]. Ad-hoc features to study
specific animal systems have also have also been considered [3, 9]. In
other work the corresponding continuum descriptions have been devel-
oped using kinetic theory and presenting hydrodynamic equations that
bridge the microscopic and macroscopic pictures. The vast body of
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work conducted on swarming systems however, has traditionally con-
sidered a fixed number of particles NV, and events such as annihilation
or creation of agents have not received much attention. On the other
hand, the possibility of swarming agents increasing or decreasing while
in motion, due for example, to birth or death events is certainly realistic
and may occur in many natural systems.

This paper aims to develop a kinetic theory for collective agents
where particle number is not kept constant but where basic mechanisms
may exist that allow for particle creation and destruction. We will do
this by first considering the case of a fixed number of particles s as a
building block and later allowing s to vary. In Section 1 we thus describe
the dynamics of a swarm of s particles and find the probability density
function for the particles to occupy positions {x;} = (x1,...%s) with
velocities {vs} = (vy,...v,) at time ¢. In Section 2 iwe consider the
general case of variable particle numbers, while in Section 3 we ....

1. A fixed particle number. In this section we describe the dy-
namics for a fixed set of N discrete particles and review the kinetic
equations they lead to, as shown in detail in Ref.[?, 10]. These will
serve as a basis to derive the kinetic equations when the number of
particles is changing, due to birth and death events, and N is no longer
fixed. Within this context, each of our 1 < i < N particles obeys the
following equations of motion

mivi = (o= Bvil)vi— Vi, > U(lxi = x;)), (2)
i#]

where m; is particle mass, which for simplicity we fix at m; = m = 1.
The first term on the right-hand-side of Eq.1 is a non-conservative
part where particle 7 exchanges energy with the environment via a self-
propelling term av; and via a frictional term (|v;|*v;. The total energy
exchange is zero when |v;|*> = a/3, giving rise to a preferred particle
speed. The other term is the contribution to the dynamics from a
pairwise interaction potential U;, given by the Morse potential

U(r) = Z —Che a4 Chetr, (3)

J#i
where C, and C,. represent the amplitude of the attractive and repulsive
contributions, respectively, and ¢, and ¢, their corresponding ranges.

Equilibrium configurations have been thoroughly investigated in the
parameter space defined by C' = C,./C, and ¢ =1, /1, [10].
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We can now introduce py({xn},{vn},t) as the N-particle proba-
bility density function, so that the probability of finding each of the
N distinguishable particles at positions {xy} = (x1,...xx) with ve-
locities {vy} = (vi,...vy) at time ¢ and within a volume dx;dv; for
each particle is given by py({xn}, {vn},t) [I, dxidv;. Since py is
a probability density function, its integral over phase space must be
normalized to one

/ px(fxah vk ) [ [ dxdvi = 1 (4)

As shown in Ref.[10] we can write the Liouville equation for this
system as
ap N
N
i=1

We now consider the reduced s particle distribution function fs({xs}, ({vs},1?)
defined as

N
foldxd ({vadot) = (3 8(xi = x)d(vi — v)) (6)
i=1
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