A Kinetic theory for swarming with birth and death events
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We consider a system of self-propelled agents interacting via pairwise attractive and repulsive
Morse potentials and subject to gaussian noise in two dimensions. Earlier work showed that
depending on interaction parameters, a catastrophic and an H-stable regime could arise, with
diverse aggregation morphologies including mills, rings, clumps, flocks in the catastrophic regime
and rigid body rotators and flocks in the H—stable one. Here, we consider both regimes and
investigate the role of noise in promoting transitions between patterns, and in causing swarm
disassembly. We find that within the catastrophic regime increasing noise intensity leads to a
first order transition between translational flocks and compact stationary swarms and yet higher
noise levels lead to swarm breakup. Within the H-stable regime instead we find .... Hysterisis.

The aggregation of self—propelled particles into coher-
ent patterns is a ubiquitous process found in many chemi-
cal, physical, biological, and engineered systems [1]. Pat-
terns may be static or dynamic and may arise over sev-
eral spatio—temporal scales. For example, interacting
droplets or ferromagnetic particles floating on fluid lay-
ers may form ordered structures [2, 3], organic molecules
adsorbed on surfaces may self assemble into monolayers
[4] while actin filaments, cells, myxobacteria and flag-
ellated bacteria may form colonies, swarms or biofilms
[5, 6, 7]. Interactions among members of these ensembles
may be electrostatic, chemotactic, hydrophobic, electro-
magnetic, of Van der Waals type, and may also depend
on the surrounding environment or cell culture.

More complex organisms such as insects, animals and
humans also self-assemble, forming schools of fish, flocks
of birds, locust swarms, or moving crowds that have in-
spired a new generation of mathematical modelers. In
all these systems, agents organize following direct visual,
tactile, auditory or other sensory couplings, giving rise
to coherent bodies that may impart protection, enhanced
mobility or other advantages to their members.

As our understanding of biological and biologically
inspired self-assembly increases there is also great in-
terest in applying this knowledge to design and cre-
ate non-biological inanimate systems with novel prop-
erties and control possibilities [11]. Swarms of multi-
ple, task-specific entities, such as unmanned land vehi-
cles, search robots, underwater gliders, aerial drones have
been tested. Expanded fabrication capabilities at the
nano and mesoscale levels may also lead to the possibil-
ity of creating swarming nanostructures to monitor the
presence of pathogens in seawater [12], or for biomedical
purposes within the human body [13].

Beginning with the seminal work of Viczek and collab-
orators in the mid-ninties, and using the basic ingredi-
ents of direct interaction among agents, self-propulsion
and the absence of central coordination, many discrete,

rule-based, kinetic and hydrodynamic models have been
presented. Some of these descriptions have considered
idealized, portable swarming systems, while others have
focused on specific organisms or vehicles, introducing ad—
hoc behaviors, experimentally derived parameters and
validated field testing.

One of the most studied discrete models within the
swarming literature was initially introduced in Ref. [14]
and is characterized by a set of individual self-propelled
particles interacting via repulsive-attractive potentials.
The model has been studied in detail [15, 16, 17] and
several characterizations of morphologies and ensemble
behavior as a function of parameter choices, noise and ex-
ternal fields have been presented, both in two and three
dimensions [19, 20]. Ad-hoc features to study specific an-
imal systems have also have also been considered [8, 9].
In other work the corresponding continuum descriptions
have been developed using kinetic theory and presenting
hydrodynamic equations that bridge the microscopic and
macroscopic pictures. The vast body of work conducted
on swarming systems however, has traditionally consid-
ered a fixed number of particles N, and events such as
annihilation or creation of agents have not received much
attention. On the other hand, the possibility of swarm-
ing agents increasing or decreasing while in motion, due
for example, to birth or death events is certainly realistic
and may occur in many natural systems.

This paper aims to develop a kinetic theory for collec-
tive agents where particle number is not kept constant
but where basic mechanisms may exist that allow for
particle creation and destruction. We will do this by
first considering the case of a fixed number of particles
s as a building block and later allowing s to vary. In
Section 1 we thus describe the dynamics of a swarm of
s particles and find the probability density function for
the particles to occupy positions {xs} = (x1,...%;) with
velocities {vs} = (v1,...vy) at time ¢. In Section 2 iwe
consider the general case of variable particle numbers,



while in Section 3 we ....

I. A FIXED PARTICLE NUMBER

In this section we describe the dynamics for a fixed set of
s discrete particles and review the kinetic equations they
lead to, as shown in detail in Ref. [10]. These will serve as
a basis to derive the kinetic equations when the number
of particles is changing, due to birth and death events,
and s is no longer fixed. Within this context, each of
our 1 < ¢ < s particles obeys the following equations of
motion
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where m; is particle mass, which for simplicity we fix
at m; = m = 1. The first term on the right-hand—
side of Eq.1 is a non-conservative part where particle 4
exchanges energy with the environment via a self— pro-
pelling term av; and via a frictional term 3|v;|?v;. The
total energy exchange is zero when |v;|?> = a/f, giving
rise to a preferred particle speed. The other term is the
contribution to the dynamics from a pairwise interaction
potential U;, given by the Morse potential
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where C, and C, represent the amplitude of the attrac-
tive and repulsive contributions, respectively, and £, and
£, their corresponding ranges. Equilibrium configura-
tions have been thoroughly investigated in the parameter
space defined by C = C,./C, and £ =1, /1, [16]. We can
now introduce fs({xs}, {vs},t) as the s-particle probabil-
ity density function, so that the probability of finding the
s particles at positions {xs} = (x1,...xs) with velocities
{vs} = (v1,...vs) at time ¢t and within a volume dx;dv;
for each particle is given by fs({xs}, {vs},t) [1,_, dx;dv;.

As shown in Ref. [10] we can write the Liouville equa-
tion for this system as
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The above equations....

and the swarm’s stationary lattice structures has been
thoroughly investigated [?]. The parameter space can be
partitioned into regions where swarms have fundamen-
tally similar morphological structures as in Figure 7. For
this paper, we focus on the biologically relevant, catas-
trophic region labeled VII. The term catastrophic refers
to the contracting behavior of the radius of the swarm as
the number of particles increases, differing from H-stable

swarms that do not contract or collapse [?]. In this pa-
rameter region, we find the swarm settles on one of two
steady state structures: a coherent flock or a circular
mill, as illustrated in Figure 7. In the flocking configura-

tion, every particle and subsequently the center of mass

of the swarm has absolute velocity given by % The

same is true for each particle in the milling configura-
tion, but depending on the radius of the particle’s orbit
around the center of mass, the particle’s angular veloc-
ity varies. When given random initial positions and ve-
locities, the choice of steady state structures the swarm
makes is highly dependent on the initial amplitude of the
velocity of the center of mass, where significantly large
velocity will increase the likely-hood of the swarm set-
tling into a flock.
In order to implement noise into the system, we alter
equation (2) to
o7
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where g(t) is a vector valued noise function associated
with the given particle. We choose a Gaussian distribu-
tion for & (t) where each component has a normal dis-
tribution with a mean of 0 and variance of ¢? that we
vary in our experiment. For a single particle, or when

U; = 0,Vi, we already know that |v7(¢)| = \/% when

2(t) = 0. But with a non-zero noise term, the particle
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tion drifts as a continuous random walk. Because of the
drift in direction, when a whole swarm is in a flocking
configuration, a change in the direction of any individual
from the already established direction of the flock will
decrease the component of the center of mass’s velocity
in that direction. Since the component parallel to the
flock’s direction of the center of mass is the dominant
term of the absolute velocity, any jitter in the individu-
als result in a net decrease in the absolute velocity of the
center of mass. In other words, if v* is the velocity of
the center of mass of a swarm initialized with a flocking

configuration and o2 = 0, then |Uj‘ = \/% But as we

velocity jitters around the value while the direc-

increase o2, we’ll see |F | approach 0.
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