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We consider a system of self-propelled agents interacting via pairwise attractive and repulsive
Morse potentials and subject to gaussian noise in two dimensions. Earlier work showed that
depending on interaction parameters, a catastrophic and an H–stable regime could arise, with
diverse aggregation morphologies including mills, rings, clumps, flocks in the catastrophic regime
and rigid body rotators and flocks in the H–stable one. Here, we consider both regimes and
investigate the role of noise in promoting transitions between patterns, and in causing swarm
disassembly. We find that within the catastrophic regime increasing noise intensity leads to a
first order transition between translational flocks and compact stationary swarms and yet higher
noise levels lead to swarm breakup. Within the H-stable regime instead we find .... Hysterisis.

The aggregation of self–propelled particles into coher-
ent patterns is a ubiquitous process found in many chemi-
cal, physical, biological, and engineered systems [1]. Pat-
terns may be static or dynamic and may arise over sev-
eral spatio–temporal scales. For example, interacting
droplets or ferromagnetic particles floating on fluid lay-
ers may form ordered structures [2, 3], organic molecules
adsorbed on surfaces may self assemble into monolayers
[4] while actin filaments, cells, myxobacteria and flag-
ellated bacteria may form colonies, swarms or biofilms
[5, 6, 7]. Interactions among members of these ensembles
may be electrostatic, chemotactic, hydrophobic, electro-
magnetic, of Van der Waals type, and may also depend
on the surrounding environment or cell culture.

More complex organisms such as insects, animals and
humans also self-assemble, forming schools of fish, flocks
of birds, locust swarms, or moving crowds that have in-
spired a new generation of mathematical modelers. In
all these systems, agents organize following direct visual,
tactile, auditory or other sensory couplings, giving rise
to coherent bodies that may impart protection, enhanced
mobility or other advantages to their members.

As our understanding of biological and biologically in-
spired self-assembly increases there is also great interest
in applying this knowledge to design and create non–
biological inanimate systems with novel properties and
control possibilities [8]. Swarms of multiple, task-specific
entities, such as unmanned land vehicles, search robots,
underwater gliders, aerial drones have been tested. Ex-
panded fabrication capabilities at the nano and mesoscale
levels may also lead to the possibility of creating swarm-
ing nanostructures to monitor the presence of pathogens
in seawater [9], or for biomedical purposes within the hu-
man body [10].

Beginning with the seminal work of Viczek and collab-
orators in the mid-ninties, and using the basic ingredi-
ents of direct interaction among agents, self–propulsion
and the absence of central coordination, many discrete,

rule-based, kinetic and hydrodynamic models have been
presented. Some of these descriptions have considered
idealized, portable swarming systems, while others have
focused on specific organisms or vehicles, introducing ad–
hoc behaviors, experimentally derived parameters and
validated field testing.
One of the most studied discrete models within the
swarming literature was initially introduced in Ref. ??
and is characterized by a set of individual self-propelled
particles interacting via a repulsive–attractive potential.
The deterministic model has been studied in detail and
several characterizations of the resulting morphologies
and their behavior as a function of parameter choices
have been presented in the literature, both in two and
three dimensions. In this paper we consider the same
system subject to random noise and illustrate behaviors
and trends
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I. MODEL

We model our multi-particle swarm by solving the fol-
lowing differential equations that describe each individ-
ual particle’s position and velocity respectively

d−→xi
dt

= −→vi (1)

mi
d−→vi
dt

= α−→vi − β|−→vi |2−→vi −
−→5Ui (2)

where mi is the mass of the particle under consideration,
making (2) represent the force on the particle. The first
two terms represent the self-propulsion term subject to a
frictional force. Assuming a particle is alone, its absolute

velocity will accelerate or decelerate to
√

α
β and remain
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there, therefore α and β can be used to tune the intrinsic
terminal velocity of each particle. The potential term,
Ui, is given by the Morse potential

Ui =
∑
j 6=i

−Cae
|−→x i−

−→x j |
la + Cre

|−→x i−
−→x j |

lr (3)

and describes the pairwise interaction between the cur-
rent particle and all the surrounding particles. Ca and
Cr represent the amplitude of the each pairwise forces of
attraction and repulsion respectively as la and lr repre-
sent the range of the these pairwise forces. The relation-
ship between the parameter space of C = Cr

Ca
and l = lr

la
and the swarm’s stationary lattice structures has been
thoroughly investigated [?]. The parameter space can be
partitioned into regions where swarms have fundamen-
tally similar morphological structures as in Figure ?. For
this paper, we focus on the biologically relevant, catas-
trophic region labeled VII. The term catastrophic refers
to the contracting behavior of the radius of the swarm as
the number of particles increases, differing from H-stable
swarms that do not contract or collapse [?]. In this pa-
rameter region, we find the swarm settles on one of two
steady state structures: a coherent flock or a circular
mill, as illustrated in Figure ?. In the flocking configura-
tion, every particle and subsequently the center of mass

of the swarm has absolute velocity given by
√

α
β . The

same is true for each particle in the milling configura-
tion, but depending on the radius of the particle’s orbit
around the center of mass, the particle’s angular veloc-
ity varies. When given random initial positions and ve-
locities, the choice of steady state structures the swarm
makes is highly dependent on the initial amplitude of the
velocity of the center of mass, where significantly large
velocity will increase the likely-hood of the swarm set-
tling into a flock.

In order to implement noise into the system, we alter
equation (2) to

mi
d−→vi
dt

= α−→vi − β|−→vi |2−→vi −
−→5Ui +

−→
ξi (t) (4)

where
−→
ξi (t) is a vector valued noise function associated

with the given particle. We choose a Gaussian distribu-
tion for

−→
ξi (t) where each component has a normal dis-

tribution with a mean of 0 and variance of σ2 that we
vary in our experiment. For a single particle, or when

Ui = 0,∀i, we already know that |−→vi (t)| =
√

α
β when

−→
ξi (t) = 0. But with a non-zero noise term, the particle

velocity jitters around the value
√

α
β , while the direc-

tion drifts as a continuous random walk. Because of the

drift in direction, when a whole swarm is in a flocking
configuration, a change in the direction of any individual
from the already established direction of the flock will
decrease the component of the center of mass’s velocity
in that direction. Since the component parallel to the
flock’s direction of the center of mass is the dominant
term of the absolute velocity, any jitter in the individu-
als result in a net decrease in the absolute velocity of the
center of mass. In other words, if

−→
v∗ is the velocity of

the center of mass of a swarm initialized with a flocking

configuration and σ2 = 0, then |−→v∗| =
√

α
β . But as we

increase σ2, we’ll see |−→v∗| approach 0.
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