Note that on the plots of the steady state values of s and g as a function of ρ_{0}, the s_{0} curve has a global maximum. Because of the form of $f_{1,2}$, there is no closed form solution for the coordinates of the maximum. However, there is an easy closed form solution if $k_{1}=k_{2}=k$ and $\delta_{1}=\delta_{2}=\delta$, as is the case for our biologically estimated parameters. This solution is $\left(\rho_{0}, s\right)=(k, k / 2)$.

Thus, it is natural to look for an approximate solution when $k_{1,2}$ and $\delta_{1,2}$ are each slightly detuned from equality. The basic idea is to expand everything in a power series in a small parameter ϵ.

Take the steady state formula for s from our manuscript, differentiate it, and set it equal to zero to look for the critical point. This is our governing equation. Then expand everything in a power series. Without loss of generality, we can do this as

$$
\begin{gathered}
k_{1}=k+\epsilon K, \quad k_{2}=k-\epsilon K \\
\delta_{1}=\delta+\epsilon \Delta, \quad \delta_{2}=\delta-\epsilon \Delta \\
\rho_{0}=\rho_{00}+\epsilon \rho_{01}
\end{gathered}
$$

Substituting the power series into the equation for s^{\prime} and solving at $\mathcal{O}(1)$ and $\mathcal{O}(\epsilon)$ yields

$$
\rho_{00}=k
$$

and

$$
\rho_{01}=K+\frac{\Delta k}{\delta}
$$

Thus, the maximum solitarious density occurs at

$$
\rho_{0} \approx k+K+\frac{\Delta k}{\delta}
$$

Substituting back into the original formula for s and keeping through $\mathcal{O}(\epsilon)$ gives us the maximum steady state solitarious density, which is

$$
s_{\max } \approx \frac{k}{2}+\frac{\Delta k}{2 \delta}
$$

I've checked how good this approximation is vis-a-vis the parameter sensitivities I discussed in yesterday's email. That is, I've set $k=65$ and $\delta=0.25$. I've let the deviation K be as large as $0.3 k$ and the deviation Δ be as large as 0.3δ - that is, I've considered up to 30% deviation from the mean value.s Comparing the exact (numerical) values for the critical point's coordinates to the approximate values, you get up to 20% error for the ρ_{0} coordinate and 15% error for the s coordinate.

