
Note that on the plots of the steady state values of s and g as a function of
ρ0, the s0 curve has a global maximum. Because of the form of f1,2, there is no
closed form solution for the coordinates of the maximum. However, there is an
easy closed form solution if k1 = k2 = k and δ1 = δ2 = δ, as is the case for our
biologically estimated parameters. This solution is (ρ0, s) = (k, k/2).

Thus, it is natural to look for an approximate solution when k1,2 and δ1,2
are each slightly detuned from equality. The basic idea is to expand everything
in a power series in a small parameter ε.

Take the steady state formula for s from our manuscript, differentiate it, and
set it equal to zero to look for the critical point. This is our governing equation.
Then expand everything in a power series. Without loss of generality, we can
do this as

k1 = k + εK, k2 = k − εK

δ1 = δ + ε∆, δ2 = δ − ε∆

ρ0 = ρ00 + ερ01

.
Substituting the power series into the equation for s′ and solving at O(1)

and O(ε) yields

ρ00 = k

and

ρ01 = K +
∆k

δ

Thus, the maximum solitarious density occurs at

ρ0 ≈ k +K +
∆k

δ
.

Substituting back into the original formula for s and keeping through O(ε)
gives us the maximum steady state solitarious density, which is

smax ≈
k

2
+

∆k

2δ

I’ve checked how good this approximation is vis-a-vis the parameter sensi-
tivities I discussed in yesterday’s email. That is, I’ve set k = 65 and δ = 0.25.
I’ve let the deviation K be as large as 0.3k and the deviation ∆ be as large
as 0.3δ – that is, I’ve considered up to 30% deviation from the mean value.s
Comparing the exact (numerical) values for the critical point’s coordinates to
the approximate values, you get up to 20% error for the ρ0 coordinate and 15%
error for the s coordinate.
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