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Abstract

Some notes on the semi-2D linear stability analysis
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From the Linear Stability Analysis related to the 2D potentials we find that the possible

unstable wavelengths k are given by the ones that satisfy the following
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and where s0 and g0 are the steady state, equilibrium concentrations of solitary and gregar-

ious locusts, repectively and given as
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In order to make analytical progress we set k1 = k2 = h and δ1 = δ2 = δ. The use of h is to

avoid confusion with the wavelength k. We also use the fact that rs = ag. Later it will be

useful to recall that within our model rg < rs. Inserting these simplifications into Eq. 1 we

find that ω(k) can be written as

ω(k) =
2πRgρ

2
0r

2
gk

2

(1 + k2r2s)
3/2

[M −m(k)] (4)

where
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and
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Note that eq. 4 holds for all paramter choices, provided that k1 = k2, rs = ag and δ1 = δ2.

Also note that since m(k) > 0 for instability to occur we must require M > 0, otherwise

ω(k) will always be negative. This is not a sufficient condition, but it is a necesary one and

translates to

ρ0 > ρc =

√
Rs

Ag

h, (7)

which in our case for Rs = 41.5, Ag = 13.3 and h = 65 implies that if ρ0 < ρc = 115

the system will always be stable. Let us now look at the terms inside the square brackets

of Eq. 4. We know that rg < rs. This implies that the function m(k) is monotonically

increasing. Hence, for ω(k) to be positive, it is also necessary that M be greater that the

minimum value of m(k) which is attained at k = 0. Thus, a more stringent condition is that

M > m(k = 0) = 1 (8)

Using the fact that m(k →∞) = r3s/r
3
g > 1 we can now distinguish three cases

• if M < 1 then ω(k) always stable

• if 1 ≤M ≤ r3s
r3g

then instabilities will arise only at small wavelengths, k → 0

• if M >
r3s
r3g

then the system is always unstable for all wavelengths.

The condition M > 1, to guarantee instability can be rewritten as

ρ0 > ρc,2 =

√√√√ Rs

Ag −Rg
r2g
r2s

h (9)

so that, we are now guaranteed instability as long as ρ0 > ρc,2 = 116.7 which is exactly

what we see from numerical plots. This condition is now sufficient for instability to set in.
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Note that for the parameters at hand, the third case cannot be ever verified, since it can be

shown that M < r3s/r
3
g for the numbers we use in the paper. It may however, be a viable

occurrence for other parameter choices. So, it seems that for the parameters we have chosen,

we get instabilities for ρ > 146.

I. MAXIMUM INSTABILITY

Finally, if we are interested in the most unstable wavelength, in the case where M > 1, we

can calculate ω′(k) to find

ω′(k) =
2πRgρ

2
0r

2
gk

(1 + r2sk
2)5/2

[
M

2− r2sk2

(1 + r2sk
2)5/2

−
2− r2gk2

(1 + r2gk
2)5/2

]
. (10)

note that the two terms in the parenthesis contain the function

g(y) =
2− y2

(1 + y2)5/2
(11)

so that finding the maximum corresponds to setting the term in parenthesis to zero and

finding values of k = k∗ so that

Mg(rsk
∗) = g(rgk

∗) (12)

The g(y) function is such that g(0) = 2, g(y → ∞) = 0, it intersects the y axis at y =
√

2

initially decreases and attains a minimum at y = 2. We note that this means, specifically,

that at k = 0 the function Mg(rsk = 0) > g(rgk = 0) since M > 1 in this case. Hence,

omega′(k) starts out positive for small k. On the other hand, the function Mg(rsk) will be

zero at the location ks =
√

2/rs, whereas the function g(rgk) will be zero at the location

kg =
√

2/rg. We also know that kg > ks, due to our choice rs < rg. In particular, this
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FIG. 1: The magenta curve is the function g(rgk) while the blue curve is the Mg(rsk) curve,

where M > 1. Here, we set M = 5, rg = 0.04 and rs = 0.14. Note that as predicted, the

two meet at a value k∗ <
√

2/rs which is the point that makes the curve Mg(rsk) = 0. In

this case, k∗ ' 6.02

means that for k = ks Mg(rsk = rsks) = 0 but g(rgk = rgks) is still positive, because it will

become zero for larger k = kg.

These facts lead us to conclude that Mg(rsk = rsks) = 0 < g(rgk = ks), and that there

must exist a point 0 < k∗ < ks where the two terms are equal. In particular, for the choice

of rs = 0.14 this leads to k∗ < 10. The value of k∗ is the value of k that leads to the

fastest growing perturbation. There is another solution to Eq. 12,but that will represent a

minimum.


