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Abstract

Some notes on the semi-2D linear stability analysis



From the Linear Stability Analysis related to the 2D potentials we find that the possible

unstable wavelengths k are given by the ones that satisfy the following

SORsrg gORgTS gOAga?] >0 1
(1+k2r§)3/2 (1+k2r§)3/2 o (1+k2a3)3/2 = (1)

w(k) = —27k?

and where sg and gy are the steady state, equilibrium concentrations of solitary and gregar-

ious locusts, repectively and given as
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In order to make analytical progress we set k; = ko = h and d; = 63 = d. The use of h is to
avoid confusion with the wavelength k. We also use the fact that r, = a,. Later it will be
useful to recall that within our model r, < r,. Inserting these simplifications into Eq.1 we

find that w(k) can be written as
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Note that eq.4 holds for all paramter choices, provided that k; = kg, s = a, and 6; = 0s.
Also note that since m(k) > 0 for instability to occur we must require M > 0, otherwise
w(k) will always be negative. This is not a sufficient condition, but it is a necesary one and

translates to

R,

Ighv (7)

Po > Pc =

which in our case for Ry = 41.5,A, = 13.3 and h = 65 implies that if py < p. = 115
the system will always be stable. Let us now look at the terms inside the square brackets
of Eq.4. We know that r, < r,. This implies that the function m(k) is monotonically
increasing. Hence, for w(k) to be positive, it is also necessary that M be greater that the

minimum value of m(k) which is attained at £ = 0. Thus, a more stringent condition is that

M>mk=0)=1 (8)
Using the fact that m(k — oo) = 77/r] > 1 we can now distinguish three cases

o if M <1 then w(k) always stable
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o if M > T—Z then the system is always unstable for all wavelengths.
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The condition M > 1, to guarantee instability can be rewritten as
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so that, we are now guaranteed instability as long as py > p.2 = 116.7 which is exactly

what we see from numerical plots. This condition is now sufficient for instability to set in.



Note that for the parameters at hand, the third case cannot be ever verified, since it can be
shown that M < r3/r3 for the numbers we use in the paper. It may however, be a viable
occurrence for other parameter choices. So, it seems that for the parameters we have chosen,

we get instabilities for p > 146.

I. MAXIMUM INSTABILITY

Finally, if we are interested in the most unstable wavelength, in the case where M > 1, we

can calculate w'(k) to find
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so that finding the maximum corresponds to setting the term in parenthesis to zero and

finding values of k£ = £* so that

Mg(rsk™) = g(rgk”) (12)

The g(y) function is such that g(0) = 2, g(y — oo) = 0, it intersects the y axis at y = /2
initially decreases and attains a minimum at y = 2. We note that this means, specifically,
that at k£ = 0 the function Mg(rsk = 0) > g(r,k = 0) since M > 1 in this case. Hence,
omega' (k) starts out positive for small k. On the other hand, the function Mg(rsk) will be
zero at the location k, = v/2/r,, whereas the function g(ryk) will be zero at the location

k, = v/2/r,. We also know that k, > k,, due to our choice r, < 7,. In particular, this
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FIG. 1: The magenta curve is the function g(r,k) while the blue curve is the Mg(rk) curve,
where M > 1. Here, we set M = 5, r, = 0.04 and r, = 0.14. Note that as predicted, the
two meet at a value k* < v/2/r, which is the point that makes the curve Mg(r,k) = 0. In

this case, k* ~ 6.02

means that for k = ks Mg(rsk = r5ks) = 0 but g(r,k = ryk;) is still positive, because it will
become zero for larger k = k.

These facts lead us to conclude that Mg(rsk = rsks) = 0 < g(ryk = ks), and that there
must exist a point 0 < £* < k, where the two terms are equal. In particular, for the choice
of r, = 0.14 this leads to k* < 10. The value of k* is the value of k that leads to the
fastest growing perturbation. There is another solution to Eq. 12,but that will represent a

minimum.



