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1 The Model Equations

st +∇ · (vss) = − f2(ρ)s+ f1(ρ)g (1a)
gt +∇ · (vgg) = f2(ρ)s− f1(ρ)g (1b)

where s(x, t),g(x, t) are solitarious and gregarious locusts, and ρ(x, t) = s(x, t)+g(x, t) is the total
local density. The motion of the locusts is governed by Morse Potential forces, with corresponding
potentials Qs,Qg such that

vs =−∇(Qs ∗ρ), vg =−∇(Qg ∗ρ) (2)

and
Qs = Rse−|x|, Qg = Rge−|x|/rg−Age−|x|/ra (3)

This represents the fact that solitarious locusts repel from other locusts, whereas gregarious locusts
are attracted to others (with possibly some hard-core repulsion or repulsion at very close distance).

We also model the exchange between the locusts using the functions

f1(ρ) =
1

1+ρ2 (4a)

f2(ρ) = δ2
(ρ/k2)2

1+(ρ/k2)2 (4b)

We will consider a 1D version and assume that there exist(s) (a) Homogeneous steady state
solution, such that ρ0,s0,g0 are constant, ρ0 = s0 +g0.

2 A few facts
Here we concentrate a few facts that make the subsequent calculations clearer. Most of these can
be easily established by the appropriate manipulations.
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• It does not seem easy to solve for the homogenous steady states explicitly. However, we can
say that f1 is a strictly decreasing function of ρ and f2 is a strictly increasing function of ρ.
Thus we know that the derivatives f ′1(ρ), f ′2(ρ) are, respectively, negative and positive real
values at any steady state.

• There is a family of homogeneous steady states parameterized by the total density ρ. In
particular, one can choose any value ρ and have the steady state

s =
δ2ρ3(1+ρ2)

k2
2 +ρ2 +δ2ρ2 +δ2ρ4

, g =
ρ(k2

2 +ρ2)
k2

2 +ρ2 +δ2ρ2 +δ2ρ4

In the small ρ limit,

s≈ δ2

k2
2

ρ
3, g≈ ρ− δ2

k2
2

ρ
3

so that g� s. In the large ρ limit,

s≈ ρ− 1
δ2

1
ρ
, g≈ 1

δ2

1
ρ

so that s� g. Chad thinks that the small ρ HSS should be unstable for reasonable parameter
choices (since a primarily gregarious population at low density shouldn’t persist as such)
and also that the large ρ HSS should be unstable for reasonable parameter choices (since a
primarily solitarious population at high density shouldn’t persist as such).

• Assuming either an infinite domain with no locusts “far away” or possibly no-flux boundaries
on a finite domain leads to the conservation condition

M =
Z

∞

−∞

[s(x, t)+g(x, t)]dx =
Z

∞

−∞

ρ(x, t)dx.

(We expect that the total number of locusts is fixed, as they are merely redistributing and
switching phase, but not entering, leaving nor born/die.)

• The velocities can be expressed either via the force or the potential kernels, in two equivalent
expressions i.e.

vs = Fs ∗ρ =−∇(Qs ∗ρ), vg = Fg ∗ρ =−∇(Qg ∗ρ) (5)

where Fi =−∇Qi. This follows from the fact (e.g. in 1D) that

Fs∗ρ =
Z

∞

−∞

Fs(x−z)ρ(z)dz =
Z

∞

−∞

(−∇Qs(x−z))ρ(z)dz =−∇

Z
∞

−∞

Qs(x−z)ρ(z)dz =−∇(Qs∗ρ)

where we have taken the derivative w.r.t. x outside of the integral w.r.t. z.

• For nonlocal attraction-repulsion forces, the kernel Fi has to be an odd function to depict the
fact that there is antisymmetry in the forces induced due to a neighbor to the left and to the
right. This means that when ρ(x, t) = ρ0=constant, we have that
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vs = Fs ∗ρ0 =−∇(Qs ∗ρ0) = 0

This says that when the density is constant, there is no net flow of any locusts, and it follows
from the fact that

Fs ∗ρ0 =
Z

∞

−∞

Fs(x− z)ρ0dz = ρ0

Z
∞

−∞

Fs(y)dy = 0,

the latter being an integral of an odd function over the infinite domain.

• The following convolution is simply related to the Fourier transform of the kernel Q:

Q∗ eikx = Q̂(k)eikx.

This follows from writing out the convolution integral and some simplifications.

• Based on the above, we also compute that

∂2

∂x2 [Q∗ eikx] =−k2Q̂(k)eikx.

This follows by elementary differentiation of the previous formula.

• The potentials in Eqn. 3 are made up of even functions of the form Q(x) = Ae|x/a| (as well as
sums or differences of such exponentials). The Fourier transform of such a function is found
to be

Q̂(k) = 2
Aa

1+(ak)2 .

This result follows by direct calculation ofZ
∞

−∞

Q(x)e−ikxdx = 2A
Z

∞

0
ex/a cos(kx)dx

with the usual two integration by parts. See also Leverentz et al (2009) or any table of Fourier
transforms for this standard result.

• Based on the above, the Fourier transforms of the potentials in Eqn. 3 are:

Q̂s(k) = 2
Rs

1+ k2 , Q̂g(k) = 2
(

Rgrg

1+(rgk)2 −
Agra

1+(rak)2

)
(6)

In particular, we observe that Q̂s(k) > 0 for all k is a monotonic decreasing function (since
solitarious locusts are assumed to have pure repulsion) whereas there exist values of k for
which Q̂g(k) < 0 because gregarious locusts are in a regime where, left on their own, they
would tend to collapse to a cluster.
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3 Analysis of growth of small perturbations of the model
We now consider the behaviour of small perturbations of Eqs. 1. Specifically, we assume that

s(x, t) = s0 + s′(x, t) = s0 +Seikxeσt (7a)
g(x, t) = g0 +g′(x, t) = g0 +Geikxeσt (7b)

where S ,G are (small) amplitudes, and k is the wavenumber. We ask whether there are conditions
under which σ > 0 signifying growth of these spatially heterogeneous perturbations. We also
define

ρ(x, t) = ρ0 +ρ
′(x, t) = s0 +g0 + s′(x, t)+g′(x, t) = ρ0 +P eikxeσt

Then by conservation, it follows thatZ
∞

−∞

[s′(x, t)+g′(x, t)]dx = 0.

[This seems to indicate that we are not free to impose arbitrary perturbations, as we have to ensure
mass conservation.]

We substitute the perturbations 7 into Eqs. 1. Let us observe first that when doing so, the only
surviving linearized convection term in the equation for s has the form

∂

∂x

(
s0

∂

∂x
[Qs ∗ρ

′]
)

= s0
∂2

∂x2 [Qs ∗ρ
′].

This follows from the fact that Qs ∗ρ0 = 0 by facts in a previous section. (We also dropped the
small nonlinear term that has both s′ and ρ′.)

For the linearization step, we observe that

f1(ρ)g− f2(ρ)s = f1(ρ0 +ρ
′)(g0 +g′)− f2(ρ0 +ρ

′)(s0 + s′)
≈ [ f1(ρ0)g0− f2(ρ0)s0]+ f1(ρ0)g′− f2(ρ0)s′+ f ′1(ρ0)ρ′g0− f ′2(ρ0)ρ′s0

= −αs′+βg′

where α = f2(ρ0)+ f ′2(ρ0)s0− f ′1(ρ0)g0 (8)
β = f1(ρ0)− f ′2(ρ0)s0 + f ′1(ρ0)g0 (9)

In the above, we have used the fact that the terms in square brackets are zero as they are steady state
terms. We have also collected all other terms as coefficients of the s′ and g′ terms, and neglected
any higher order terms such as s′g′,etc.

The equations (in 1D) are then

s′t− s0
∂2

∂x2 [Qs ∗ρ
′] = −αs′+βg′ (10a)

g′t−g0
∂2

∂x2 [Qg ∗ρ
′] = αs′−βg′ (10b)

Using the explicit forms of the perturbations and the facts previously established, we obtain
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σS + s0(S +G)k2Q̂s = −αS +βG (11a)
σG +g0(S +G)k2Q̂g = αS −βG (11b)

These can be written in matrix form(
σ+ s0k2Q̂s +α s0k2Q̂s−β

g0k2Q̂g−α σ+g0k2Q̂g +β

)(
S
G

)
=

(
0
0

)
For nontrivial solutions, the determinant of the above matrix must be zero. This gives rise to the
characteristic equation(

σ+ s0k2Q̂s +α
)(

σ+g0k2Q̂g +β
)
− (s0k2Q̂s−β)(g0k2Q̂g−α) = 0

Simplification leads to the form
σ

2 +Bσ+C = 0.

where
B = B(k) = k2[s0Q̂s +g0Q̂g]+ (α+β),

C = C(k) = (s0k2Q̂s +α)(g0k2Q̂g +β)− (s0k2Q̂s−β)(g0k2Q̂g−α)

The expression in C is of the form

(a+α)(b+β)− (a−β)(b−α)

Where a = s0k2Q̂s,b = g0k2Q̂g. Expanding the products and simplifying leads to

C = (ab+aβ+bα+αβ)− (ab−βb−αa+αβ) = aβ+bβ+aα+bα = (a+b)(α+β)

i.e. we have found (collecting both coefficients here) that

B = B(k) = k2[s0Q̂s +g0Q̂g]+ (α+β),

C = C(k) = k2(s0Q̂s +g0Q̂g)(α+β)

We now observe that B(k) is the sum of two terms and C(k) is the product of the same two
terms, which implies that the characteristic equation factors as follows:

σ
2 +Bσ+C = (σ+ k2(s0Q̂s +g0Q̂g))(σ+α+β) = 0

We have thus found the two eigenvalues explicitly, namely

σ1 =−k2(s0Q̂s +g0Q̂g), σ2 =−(α+β)

Using the formulas for the coefficients α,β leads to

σ2 = −( f2(ρ0)+ f ′2(ρ0)s0− f ′1(ρ0)g0 + f1(ρ0)− f ′2(ρ0)s0 + f ′1(ρ0)g0) (12)
= −( f2(ρ0)+ f1(ρ0)) (13)
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We now observe that in the well-mixed case, when there is no spatial redistribution, we want
the homogeneous steady state to be stable. This is equivalent to saying that σ2 < 0. Note that in that
same case, k = 0, so a second zero eigenvalue is obtained, as expected from the mass conservation
condition.

In order for instability to spatially heterogeneous perturbations, we require that σ1 > 0. Hence
the condition for aggregation is:

k2(s0Q̂s +g0Q̂g) < 0

Since k is real, this condition is equivalent to

(s0Q̂s +g0Q̂g) < 0.

We point out that this condition is remarkably analogous to the finding in Section 2.2 of Lev-
erentz et al’s (2009) calculation for the stability of a single species swarm. We also note that this
condition does not depend on the nature of the functions f1, f2 beyond the steady state swarm
densities that they determine. It thus depends only on the attraction-repulsion potentials and the
relative amounts of solitary and gregarious locusts.

4 How aggregation could occur
In view of the above, let us initially consider only the redistribution dynamics, i.e., take f1 = f2 = 0
and assume that s0,g0,ρ0 = s0 + g0 are set by some arbitrary mechanism, e.g. by introducing a
fixed number of each type of locust into an arena where they interact with each other by attrac-
tion/repulsion. Let us define the parameter φ = g0/ρ0,1−φ = s0/ρ0, such that 0≤ φ≤ 1. We are
interested in an initial population consisting mainly of solitarious locusts, where a few gregarious
locusts are introduced (small φ). We ask how many gregarious locusts are needed in order to lead
to an aggregation instability. Dividing by N, restate the instability condition as

(1−φ)Q̂s(k)+φQ̂g(k) < 0.

then in the case φ = 0 it is clear that no instability is possible, since we have established that
Q̂s(k) > 0 for all k. We also know that for φ = 1 there exist values of k such that the inequality
is satisfied. Let k∗ be the wavenumber corresponding to the minimum value of Q̂g(k) (which is
negative, as argued above). Then we can adjust φ such that at that k∗ and φcrit the above expression
is an exact equality, and at all other k values, the inequality is violated. Now consider a slightly
larger value of φ (slightly more gregarious locusts). This (φ > φcrit) will result in a range of
wavenumbers satisfying the instability condition, and aggregation will ensue.

Now let us return to the full dynamics, and consider some initial homogeneous steady state
s0,g0 that is determined by the dynamics of switching with f1, f2 nonzero. Then according to the
above, aggregation will occur only once g0 is sufficiently large relative to s0. This could result
either from some noise that leads by chance to a high enough local perturbation of g0, or by a
bistable mechanism that drives the population into a second steady state with relatively large g0
value (relative to s0).

Base on these ideas it should be relatively easy to construct situations that do or do not lead to
an aggregation of locusts, either by adjusting the kinetic functions or by directly manipulating the
relative levels of each type of locust.
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