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The African Locust Schistocerca gregaria is known to have two
interconvertible phases, solitary and gregarious. Individuals are
repelled (attracted) by others depending on their solitary (gregar-
ious) state, and crowding tends to bias conversion towards the
gregarious form. Here we model the spatio-temporal interactions
and transitions between the two phases using nonlocal (integro-
partial) differential equations. We use steady state and linear
stability analysis to characterize the conditions for onset of a lo-
cust “plague”, characterized by mass transition to the gregarious
form. Model reduction to approximate “bulk” theory allows us to
quantify the size and density of the emergent gregarious clusters,
and numerical simulations provide qualitative descriptions of the
swarm structure.
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Outbreaks of the desert locust Schistocerca gregaria regularly af-
flict vast areas of northern Africa, the Middle East and south-

west Asia. Depending on climate and vegetation conditions, billions
of voracious locusts aggregate into destructive swarms that span ar-
eas up to a thousand square kilometers. A locust swarm can travel a
few hundred kilometers per day, stripping crops and vegetation in its
desolate path [1–4]. The latest locust plague in West Africa (2003–
2005) severely disrupted agriculture, destroying $2.5 billion in crops
destined for both subsistence and export. Despite control efforts to-
talling $400 million, loss rates escalated to 50% in certain regions
[5, 6]. These numbers alone attest to the urgency of finding better
ways to predict, manage, and control locust plague outbreaks.

Between plagues, locusts are mainly solitary creatures who live
in arid regions and lay eggs in small breeding grounds lush with veg-
etation. Occasionally, resources are abundant enough to support nu-
merous hatchings, leading to a high density of adults. Overcrowding
at resource sites promotes a transition to a gregarious phase, in a self-
reinforcing process. The available supply of vegetation and water at
the breeding ground is eventually exhausted, and locusts migrate en
masse to other locations in search for nourishment. Within the newly
formed swarm, individuals mantain their cohesiveness via direct sen-
sory communication, or via chemical and vibrational signaling [7–9].
Newly settled feeding grounds are also inevitably depleted, leading to
several stop-and-go cycles of traveling locust bands. Outbreaks may
be exacerbated in periods of drought, when large numbers of locusts
congregate on the same breeding or feeding grounds.

Desert locusts are phase polyphenic: while sharing the same
genotype, individuals may display different phenotypes [10, 11] such
as morphology [12], coloration [13], reproductive features [14] and
most significantly behavior [15, 16]. The latter can change from soli-
tary where locusts seek isolation to gregarious where they attract one
another. Behavioral state is plastic [3, 11, 15] and strongly dependent
on local population density: in sparse surroundings, a gregarious lo-
cust transforms into the solitary state [15] and vice–versa in crowded
environments. It is this phenotype switch that takes place when large
numbers of locusts gather at a site, promoting a massive change from
solitary to gregarious form and initiating the swarm plague [17, 18].

Locust gregarization may be induced by visual or olfactory cues,
but a most potent stimulus is tactile: the repetitive stroking of the

femora of hind legs [15, 16, 19] is believed to function as a crowd-
ing indicator. The mechanosensory stimulation of leg nerves leads to
subsequent serotonin cascades in the brain, and in turn to the onset of
gregarious behavior [16, 19, 20]. Furthermore, contact with individu-
als coming from behind enhances the tendency of a stationary locust
to move [21]. In the laboratory, it has been shown that the solitary
to gregarious switch can be induced by rubbing a locust’s hind leg
for 5s per minute during a period of 4h [19]. Cessation of physical
contact leads to a transition back to the solitary state after 4h.

There have been relatively few mathematical studies of locust
behavior, especially of the switch between solitary and gregarious
phases in a spatio-temporal framework. Both [22] and [23] studied
the dynamics of rolling patterns formed by migrating locust groups.
Data driven models include the self-propelled particle model of [24]
where the observed transition between disordered to ordered locust
movement was described via well-known physics paradigms [25]. A
logistic map was introduced in [26] to describe population switch-
ing via a birth rate and a carrying capacity dependent on population
density modulated by stochastic effects. None of the previous studies
however, have focused on how an initially disperse, solitary locust
population spontaneously transitions into an aggregated, gregarious
one. The goal of this paper is to provide a mathematical description
of such behavioral phase changes by taking into account the most
relevant biological findings and by including relevant spatial features
that cause locusts to clump or disperse.

OUR MAIN FINDING IS...

The model
As described above, locusts in a group are subject to attractive and/or
repulsive forces based on combined sensory, chemical, and mechan-
ical cues that affect their motion. Here we assume that such sensing
is directionally isotropic, a simplification used in many similar mod-
els [30, 31]. We consider a locust population density ρ(x, t) moving
at velocity v(x, t) rather than individual locusts. This standard con-
tinuum approach provides us with analytical tools that can be brought
to bear on the problem of characterizing the initiation and structure
of a swarm. Our framework is based on a common swarm model that
includes a conservation law for ρ and a representation for v given by

ρt +∇ · (ρv) = 0, v = −
∫

Ω

∇Q(x,x′)ρ(x′, t) dx′ [1]
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where x = (x, y) (e.g., in 2D). Here, we model v as a convolution
between the density ρ(x, t) and the social interaction field Q(x,x′)
that describes the influence of the locust population at location x′ on
that at location x. We use the notation v = −∇Q ∗ ρ to denote the
convolution in Eqn. 1 and assume that Q(|x − x′|) is radially sym-
metric and depends only on the distance between x and x′. Eqns. [1]
have been extensively studied in one and two dimensions for many
specific interaction choices [32–35]. Solutions generally include dis-
tinct regimes such as steady state swarms, spreading, and blow-up
[27, 28, 32].

To adapt Eqns. [1] to biphasic desert locust swarm dynamics, we
denote the density of solitary and gregarious locusts by s(x, t) and
g(x, t), respectively, and the total density by ρ = s + g. We also
include a density-dependent rate f1(ρ) to model the transition from
the gregarious to the solitary state and f2(ρ) for the opposite switch.
Our model thus reads

ṡ+∇ · (vss)= −f2(ρ)s+ f1(ρ)g, [2a]
ġ +∇ · (vgg)= f2(ρ)s− f1(ρ)g, [2b]

where the velocities are given by

vs = −∇(Qs ∗ ρ), vg −∇(Qg ∗ ρ). [3]

These equations are complete once we specify the form of the soli-
tary and gregarious social interaction fieldsQs andQg . Since solitary
locusts are crowd-avoiding we modelQs as purely repulsive. Gregar-
ious locusts, on the other hand, are assumed to be attracted to others,
except for short distance repulsions due to excluded volume effects.
Hence, we let Qs and Qg be described by the following Morse-type
interactions

Qs(x) = Rse−|x|/rs , Qg(x) = Rge−|x|/rg −Age−|x|/ag , [4]

where Rs, Rg, Ag are interaction amplitudes and rs, rg and ag are
interaction length scales. For cohesiveness to occur, the param-
eters in Qg must be chosen in the so called “clumping regime”,
per the conditions stated in [8, 27, 29]. Specifically, we require
Rgag −Agrg > 0 so that repulsion dominates at short length scales,
and Aga

2
g − Rgr

2
g > 0 so that attraction dominates at longer ones.

We model fi=1,2(ρ) via Hill-type functions so that

f1(ρ) =
δ1

1 + (ρ/k1)2 , f2(ρ) =
δ2 (ρ/k2)2

1 + (ρ/k2)2 . [5]

Here, δi=1,2 are maximal rates and ki=1,2 are characteristic locust
densities at which the transitions occur at half of their maximal val-
ues. These choices allow f1 to be a decreasing function of ρ and
f2 to increase with ρ, saturating at δ2. Our complete model thus is
represented by Eqs. [2]-[5]. We analyze them in 1D and 2D, with
appropriate boundary conditions in a finite domain and with initial
conditions that specify s(x, 0) and g(x, 0).

Biological Parameter Values
In order to estimate the parameters in Eq. [5] we draw upon the ex-
perimental results of [19]. Since phase changes between states take
approximately four hours we estimate δ1 = δ2 = 0.25 h−1. The crit-
ical density for gregarization is reported to be about 50 - 80 locusts
/m2. We assume that the solitarization process has the same critical
density, and set k1 = k2 ≈ 65 locusts /m2. To estimate the social
interaction parameters in Eqs. [4], we apply instead the results of
[24, 36], who identify the “sensing range” of a locust as 0.14 m, and
the “repulsion range” as 0.04 m, of the same order of magnitude as
the approximately 0.08 m body length of a mature individual. For the
gregarious phase we thus set the repulsion length scale at rg = 0.04
m and the attractive one at ag = 0.14 m corresponding to the ex-
perimental sensing range. These choices are in agreement with field

observations where attraction typically occurs at longer length scales
compared to repulsion. We also assume that solitary locusts tend to
repel others at their sensing range so that rs = 0.14 m. Due to these
choices, in the remainder of this paper we will often be working un-
der the assumption that rg < ag = rs.

Finally, we estimate Rs, Rg , and Ag from explicit velocity com-
putations. The speed of a locust when it is alone varies between 72–
216 m/hr, depending on diet [36]. At the upper end, this is roughly
1 body length per second. When it is moving in a group, the speed
varies in a tighter range of 144–216 m/hr [36]. To estimate Rs we
imagine a hypothetical semi-infinite density field ρ(x) = ρ0H(x)
where H(x) is the Heaviside function and ρ0 = 65 locusts /m2, the
approximate critical density of a gregarious group. A solitary locust
placed at the swarm’s edge at the origin, should move to the left with
maximal velocity vmax

s = −216 m/hr. We use the velocity definition
Eq. [3] to write

vs(0, 0) = −∂x {Qs ∗ ρ0H(x)}
∣∣
(0,0)

= vmax
s , [6]

which we solve to find Rs = 11.87 locusts·m2/hr. Similarly, a gre-
garious locust at the origin should move to the right with maximal
velocity vmax

g = 216 m/hr, so

vg(0, 0) = −∂x {Qg ∗ ρ0H(x)}
∣∣
(0,0)

= vmax
g . [7]

A gregarious locust placed at the attraction length scale ag = 0.14
m should also move to the right, but with a slower velocity which we
take to be the minimal velocity in a crowd, vmin

g = 144 m/hr. Thus

vg(−0.14, 0) = −∂x {Qg ∗ ρ0H(x)}
∣∣
(−0.14,0)

= vmin
g . [8]

Together, these two conditions determine Rg = 5.13 locusts·m2/hr
and Ag = 13.33 locusts·m2/hr.

Homogeneous steady states
For any set of initial conditions, the mean locust density ρ0 is known,
and corresponds to the the total density at the homogeneous steady
state. Accordingly, there is a family of homogeneous steady states
parameterized by the total homogeneous density ρ0. The densities
of solitary and gregarious locust populations arising from the steady
state solutions of Eqs. 2 and 2b are

s0 =
ρ0δ1k

2
1(k2

2 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

, [9a]

g0 =
δ2ρ

3
0(k2

1 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

. [9b]

In the small ρ0 limit these can be approximated as

s0 ≈ ρ0 −
δ2
δ1k2

2

ρ3
0, g0 ≈

δ2
δ1k2

2

ρ0, [10]

so that the low-density steady state is composed mostly of solitary
locusts. In the large ρ0 limit on the other hand

s0 ≈
δ1k

2
2

δ2ρ0
, g0 ≈ ρ0 −

δ1k
2
2

δ2ρ0
, [11]

so that the high-density steady state is composed mostly of gregari-
ous insects. These estimates already point to the nonmonotonicity of
s0 with total density. Further evidence of this relationship is given in
Fig. 1 where s0, g0 are shown as functions of the total density ρ0. To
obtain the three sets of curves, we took a uniform distribution around
each {δ1, δ2, k1, k2} parameter, centered at our biological estimates
(k1 = k2 = 65 locusts /m2 and δ1 = δ2 = 0.25 h−1), with a range
from 0.7 to 1.3 times these estimated values. We drew 10,000 sample
parameter sets and plotted three pairs of curves, corresponding to 25,
50, and 75 percentile levels of the steady state value of s0 (in blue)
and g0 (in green).
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As noted, s0 at first increases with ρ0, as both solitary and gre-
garious locusts accumulate. At a critical total density ρc, s0 reaches
a maximum, whereas g0 keeps monotonically increasing. From a
biological point of view, this model prediction implies that homo-
geneous solitary groups can only exist up to ρc, beyond which gre-
garization dominates. While for the chosen functions fi=1,2, closed
form expressions for the maximum cannot easily be obtained, for the
biologically estimated parameters of this work, k1 = k2 = k and
δ1 = δ2 = δ, we find that the maximum solitary density is attained
at ρ0 = k when s0 = g0 = k/2.

Linear stability analysis
In this section we study the stability of the steady state solution in
Eqs. [9a] and [9b], to determine under what conditions uniformly
spread locust populations aggregate or disperse, creating local clus-
ters or vacancies. We thus consider small perturbations s1, g1 about
the s0, g0 values and let

s(x, t) = s0 + s1(x, t), g(x, t) = g0 + g1(x, t), [12]

which leads to ρ(x, t) = s0 + g0 + s1(x, t) + g1(x, t). Substituting
Eqn. [12] into Eq. [2] under the assumptions s1 � s0 and g1 � g0

and expanding to first order in the perturbations we obtain the lin-
earized equations

ṡ1 = s0Qs ∗ ∇2(s1 + g1)−As1 +Bg1, [13a]
ġ1 = g0Qg ∗ ∇2(s1 + g1) +As1 −Bg1, [13b]

where

A = f2(ρ0) + f ′2(ρ0)s0 − f ′1(ρ0)g0, [14a]
B = f1(ρ0) + f ′1(ρ0)g0 − f ′2(ρ0)s0. [14b]

and where A,B > 0 for all ρ0 6= 0 since f1 is a monotonically
increasing function of ρ0 and f2 is a monotonically decreasing one.
To further analyze the linearized equations, we Fourier expand the
perturbations as

s1(x, t) =
∑
q

Sq(t)eiq·x, s2(x, t) =
∑
q

Gq(t)eiq·x. [15]

For each perturbation wave number q the components {qx, qy} may
be physically interpreted as the inverse of typical length scales on
which the perturbation occurs. The most unstable of these may be
interpreted as the typical size of an emerging gregarious or solitary
locust patch. We allow for an infinitely large domain so that there
are no restrictionds on q. Thus, upon substituting the Fourier expan-
sion of Eqn. [??] into Eqn. [13] we find a set of ordinary differential
equations for each Fourier mode amplitude. These are conveniently
written in the following matrix form

d

dt

(
Sq
Gq

)
= L(q)

(
Sq
Gq

)
, [16a]

L(q) ≡
(
−s0q

2Q̂s(q)−A −s0q
2Q̂s(q) +B

−g0q
2Q̂g(q) +A −g0q

2Q̂g(q)−B

)
. [16b]

Here, q = |q| is the perturbation wave number, and Q̂s,g(a) are the
Fourier transforms of the two dimensional social interaction poten-
tials, respectively

Q̂s(q) =
2πRsr

2
s

(1 + r2
sq2)3/2

, [17]

Q̂g(q) =
2πRgr

2
g

(1 + (r2
gq2)3/2

−
2πAga

2
g

(1 + a2
gq2)3/2

. [18]

The eigenvalues λi=1,2(q) of L(q) can be written as

λ1(q) = −q2
[
s0Q̂s(q) + g0Q̂g(q)

]
, λ2 = −(A+B). [19]

The eigenvalue λ2 is q independent and negative since A,B > 0.
Thus, the constant density steady state is stable if λ1(q) < 0 for all
admissible q. If λ1(q) ≥ 0 for some q, then the constant density
steady state is unstable to perturbations of those wave numbers. The
pivotal eigenvalue λ1(q) embodies all physically relevant parameters
and is written in the most general form. In order to make analytical
progress, we let k1 = k2 = k, δ1 = δ2 = δ and rs = ag , which
follow from our biological assumptions. Later it will be useful to
recall that within our parameter estimates rg < ag . Inserting these
simplifications, we rewrite λ1(q) as

λ1(q) =
2πRgρ

3
0r

2
gq

2

(h2 + ρ2
0)(1 + q2a2

g)3/2
[H(ρ0)− h(q)] [20]

where

H(ρ0) =
ρ2

0Aga
2
g − k2Rsa

2
g

Rgρ2
0r

2
g

, h(q) =
(1 + q2a2

g)3/2

(1 + q2r2
g)3/2

. [21]

Since h(q) > 0, for instability to occur we must require H(ρ0) > 0,
otherwise λ1(q) will always be negative. This necessary - but not
sufficient - condition translates to ρ2

0 > k2Rs/Ag . Let us now look
more carefully at the terms inside the square brackets of Eqn. [20].
Since rg < ag , the function h(q) is monotonically increasing.
Hence, for λ1(q) to be positive, it is also necessary that H(ρ0) be
at least greater than the minimum value of h(q), attained at q = 0.
Thus, a more stringent condition for instability is

H(ρ0) > h(q = 0) = 1. [22]

Using the fact that h(q →∞) = a3
g/r

3
g > 1 we can now distinguish

three cases:

• if H(ρ0) < 1 then λ1(q) < 0 for all q and the homogeneous
steady state is stable to perturbations of all wave numbers.

• if 1 ≤ H(ρ0) ≤ a3
g/r

3
g then λ1(q) will have a single root at

q = q∗ and instabilities in the homogeneous steady state will
arise for perturbations with small wave numbers q < q∗, giving
rise to large clusters of gregarious or solitary patches.

• ifH(ρ0) > a3
g/r

3
g then λ1(q) > 0 for all q and the homogeneous

steady state is unstable to perturbations of any wave number.

The conditionH(ρ0) > 1 that guarantees instability can be rewritten
as

ρ0 >

(
Rs

Ag −Rg(rg/ag)2

)1/2

k. [23]

The above inequality is one of the most important results of this pa-
per and states that for sufficiently large locust densities uniform dis-
tributions are no longer stable and concentrated patches of locusts of
various sizes may form. In this work we do not include descriptions
of vegetation or crops, but the instability condition may be consid-
ered an indicator of the locust plague, where patches of high den-
sity locust groups may arise in confined spaces causing much more
damage than if uniform locust populations were spread over the en-
tire available domain. Note that in order for the instability to occur
not only the densituy has to be large enough, but also the “clumping
condition” introduced earlier and that represents long range locust
attraction, Agr

2
g −Rgr

2
g > 0, must hold.

For the locust parameter choices specified in this work, Eq. refeq:
homogeneous solution is unstability as long as ρ0 > 59.9, close to
the 50th percentile value of ρ0 = 57.5 in Fig. 1, which is the left bor-
der of the grey region. [CHAD IS CONSIDERING: WHY AREN’T
THEY CLOSER?] The vertical black dashed lines indicate the 25th
and 75th percentile values for the onset of instability. Note that at
the 50th percentile level, instability occurs before g0 overtakes s0 in
value.

Footline Author PNAS Issue Date Volume Issue Number 3



Fig. 2 shows the most unstable wave number kmax as a function
of ρ0. This wavenumber would be characterize the cluster diameter
of the swarm as it is first initiated. [BRIEFLY EXPLAIN HOW
OBT’D]. For low densities, the most unstable wavenumber is 0, in-
dicating that large wavelength aggregation zones destabilize first. As
ρ0 increases, there is a sharp transition region in which kmax grows
rapidly. Here, clusters of some finite size would be seen. We fur-
ther observe that kmax levels to a plateau value. (As before, the
three curves in Fig. 2 are the 25th, 50th, and 75th percentile val-
ues as parameters are varied). At the 50th percentile value the large
ρ0 asymptotic value of kmax is kmax = 8.9. [GIVE UNITS AND
INDICATE PREDICTED CLUSTER DIAMETERS.]

Typical locust patch size
We can now estimate the typical locust patch size d when the uni-
form population is unstable to perturbations by finding the most un-
stable wavelength qmax that maximizes λ(q). We can thus identify
d ' 1/qmax. We thus calculate λ′(q) under the instability condition
H(ρ) > 1 to find

λ′(q) =
2πRgρ

3
0r

2
gq

(h2 + ρ2
0)

[
H

2− a2
gq

2

(1 + a2
gq2)5/2

−
2− r2

gq
2

(1 + r2
gq2)5/2

]
. [24]

To find qmax we set the above expression to zero λ(qmax = 0).
Note that at q = 0 the term in parenthesis in Eqn. [24] is given by
2(H(ρ0) − 1) > 0 due the instability condition. Furthermore, at
q =

√
2/ag the same term is 2a3

g(r2
g − a2

g)/(a2
g + 2r2

g)5/2 < 0
since rg < ag . These two limits imply that λ′(qmax) = 0 for
qmax <

√
2/ag .

THIS IS A BIT IFFY:
Numerical estimates show that for the parameters at hand the

maximum is obtained in the vicinity of
√

2/ag so we let qmax '√
2/ag − qsh with 0 < qsh �

√
2/ag . After expanding Eqn. [24]

to leading orders and in the limit of large ρ0 we find

qsh '
9
√

3√
2rs

Rg

Ag

r2
g

r2
s

[25]

we thus expect typical clusters to extend over the range

d '
√
rs

2
[
1− 9

√
3

2
√

2

Rg

Ag

r2g
r2s

] [26]

which, for the parameters at hand is rougly d ' 0.11 m.
CHAD: NOTE THAT FOR SURE, THIS IS CLOSE TO KMAX

= 8.9 WHICH YOU ALSO HAD IN THE PAPER AND D = 1/8.9
= 0.11, BUT WHAT DOES THIS MEAN PHYSICALLY? OUR
CLUSTERS ARE MADE OF A COUPLE OF LOCUSTS, SINCE
THEY ARE TYPICALLY 0.08 METERS???

Bulk theory for segregated states
In simulations of [2], we observe mass-balanced states in which gre-
garious and solitary locusts spatially segregate into regions with dis-
joint support. This means that in the given regions ρ ≈ s or ρ ≈ g.
We can approximate this behaviour with the following “bulk” state
model reduction. For convenience, we define the total number of
solitary and gregarious locusts, S and G respectively as

S =

∫
Ω

s dΩ, G =

∫
Ω

g dΩ, [27]

where Ω is our spatial domain, the total population mass is M =
S +G, and mass fractions are given as

φs = S/M, φg = G/M, φs + φg = 1. [28]

We assume that solitary locusts are spread throughout most of the
domain Ω, covering an area denoted αs, whereas gregarious locusts
clumped in a region whose area we call αg . (This area can be esti-
mated from the gregarious potential; see [4].) Then in these regions,
local densities are approximately

s = S/αs, g = G/αg. [29]

If we now integrate Eqs. [2] over the domain the spatial terms vanish,
and using ρ ≈ s or ρ ≈ g in the disjoint regions, we find∫

ṡ = −
∫
f2(s)s+

∫
f1(g)g = −

∫
ġ [30]

Further assuming that s, g are approximately constant in the regions
of their support, the above equations can be rewritten as

Ṡ = −f2(S/αs)S + f1(G/αg)G = −Ġ [31]

We can write the above in terms of the mass fractions φs, φg from
[28]

φ̇s = −f2(Mφs/αs)φs + f1(Mφg/αg)φg = −φ̇g [32]

Finally, substituting the definitions of f1, f2 from [5] we obtain

φ̇s = − c1φ
3
s

1 + c2φ2
s

+
c3φg

1 + c4φ2
g

= −φ̇g [33]

where the ci reduced parameters are given by

c1 =
δ2M

2

α2
sk

2
2

, c2 =
M2

α2
sk

2
2

, c3 = δ1, c4 =
M2

α2
gk

2
1

. [34]

The ODEs [33] can be used to compute the steady state fractions
φs, φg by setting LHS to zero in each equation. Here we consider the
dynamics of this system. It is possible to reduce this to a single equa-
tion using φs = 1−φg , though the result is is complicated. An easier
approach is to consider the large M limit, in which [33] becomes (to
leading order)

φ̇s = −δ2φs +
c3
c4φg

= −φ̇g [35]

Noting the values of the constants in [35], and the fact that 0 ≤
φs, φg ≤ 1 are dimensionless, we observe that the first term is of
O(1) whereas the second term is of O(1/M2). This means that, to
leading order, for large M , the mass fraction of the solitary locusts
decays exponentially in time. This is based on the assumption of a
segregated state, and would be expected to occur once segregation is
nearly complete.

In short, for large M, the entire population will eventually be-
come gregarious. This implies that the level ρ0 that leads to insta-
bility is crucial. If the state of the population is in the stable regime,
mass gregarization can be avoided. As soon as the population shifts
beyond the border of stability (at which φs ≈ φg), there is no avoid-
ing the gregarization of the entire group.

Discussion
TEMPORARY.. TO BE WRITTEN AFTER RESULTS COL-
LECTED] A recent general review of models for aggregation based
on attraction and repulsion is provided by [37]. Purely theoretical
models for swarming include integro-differential equations [9]. Ap-
plication of such ideas to flying locust swarms include [22] and [23].

As far as marching locusts, there have been a number of studies
in which data collected in the laboratory and theoretical models have
been combined. Most models concerned with alignment of locusts
moving in a group [24, 38, 39] as well as proportion of locusts mov-
ing at a given time [21, 36] depending on treatments such as diet and
denervation. The motivation in many of these models is to explore the
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transition between a disordered and a coherent marching group capa-
ble of great destructive force. [38] formulated an abstract model of
collective motion, with repulsion and attraction that was then mod-
ified by [36] for locusts. The authors describe an individual-based
model with locust in 2 states (stopped, moving) with stochastic tran-
sitions. They consider that locusts sense others in a spatial range and
that this leads to an escape-dominated response with a parameter χ
that reflects the strength of social interactions. They take a repul-
sive range of 2 cm and assume that the strength of the repulsion is
χr=10cm/s2. They write a Langevin equation for the speed and ori-
entation of each locust. The main output of the model is proportion of
individuals moving and mean group speed as a function of the group
density. (The mean group speed varies sigmoidally (over the range
0-7 cm/sec) with density in the range of 0-100 locusts /m2.
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Fig. 1. Uniform steady state (SS) levels of solitary locusts, s0 (blue) and gregarious
locusts, g0 (green) as functions of the mean locust density ρ0 on a log-log plot. The
three curves represent the 25, 50 and 75 percentile of the SS value obtained using a
uniform distribution centered at parameter values estimated from biological data, with a
range ±30%. The steady state is stable in the white region and unstable in the red region.
Vertical dashed lines are 25th and 75th percentile values for onset of instability. At the 50th
percentile, instability occurs before the value of g0 overtakes s0.

Fig. 2. Maximally unstable wavelength. At low densities, only the wavenumber k = 0 is
unstable. Near the critical density, kmax increases rapidly to some constant value as the
density increases. Three curves correspond to same percentile values as in Fig 1
.

[PUT IN SUPPLEMENT?] We can look for an approximate solution when k1,2 and δ1,2 are each slightly detuned from equality. The
basic idea is to expand everything in a power series in a small parameter ε. Take the formula for s0 from Eq. 9a, differentiate it, and set it equal
to zero to look for the critical point. This is our governing equation. Then expand everything in a power series. Without loss of generality, we
can do this as

k1 = k + εK, k2 = k − εK, [36a]
δ1 = δ + ε∆, δ2 = δ − ε∆, [36b]

ρ0 = ρ00 + ερ01. [36c]

Substituting the power series into the equation for s′ and solving at O(1) and O(ε) yields

ρ00 = k, ρ01 = K +
∆k

δ
. [37]

Thus, the maximum solitary density occurs at ρ0 ≈ k + K + ∆k/δ. Substituting back into the original formula for s0 and keeping through
O(ε) gives us the maximum steady state solitary density, which is smax ≈ k/2 + ∆k/(2δ).

I’ve checked how good this approximation is vis-a-vis the parameter sensitivities. That is, I’ve set k = 65 and δ = 0.25. I’ve let the
deviation K be as large as 0.3k and the deviation ∆ be as large as 0.3δ – that is, I’ve considered up to 30% deviation from the mean values.
Comparing the exact (numerical) values for the critical point’s coordinates to the approximate values, you get up to 20% error for the ρ0

coordinate and 15% error for the s coordinate.
Another interesting feature of the graph of s0 and g0 is that there is a point of equality between the two curves. By setting s0 = g0 in Eq.

9 and rejecting the trivial case ρ0 = 0, one finds one positive solution, which is that s0 = g0 when

ρ0 =
k1

2δ2

(
δ1 − δ2 +

√
(δ1 − δ2)2 + 4δ1δ2(k2/k1)2

)
. [38]

This solution is exact (no assumptions or approximations are necessary). In the white and grey region of Fig. 9, s0 > g0 at the 50th percentile,
and the reverse is true in the pink region. The solid, vertical purple lines lines show the 25th and 75th percentile of the equality point.
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