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The African Locust Schistocerca gregaria is known to have two in-
terconvertible phases, solitarious and gregarious. Here we model
the spatio-temporal dynamics and treansitions between these two
phases. [ABSTRACT TO BE DONE LATER].
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A recent locust outbreak in Africa from 2003 - 2005 destroyed
$2.5 billion in crops and cost an additional $400 million in control
efforts, with crop loss rates nonetheless reaching 50% in some re-
gions [1, 2]. The principal perpetrator of many such outbreaks is the
desert locust Schistocerca gregaria. These insets can form devastat-
ing swarms comprising billions of individuals, covering thousands of
kilometers of ground area, and traveling tens of miles or more each
day [?, ?, 3, 4]. Locust swarms are a perplexing humanitarian prob-
lem. Points to include (need references for these):

• Many developing countries must rely on heavy irrigation to make
their land arable.

• Consequently, food becomes concentrated in a small area that lo-
custs congregate to, which then contributes to swarming behavior.

• Desert locusts wreak serious havoc on crops and simultaneously
threaten the livestock that must now compete with them for food.

• Famine thus results.

Crucially, desert locusts are phase polyphenic, meaning that in-
dividuals of the same genotype display more than one phenotypic
form depending on external influences [5, 6]. For desert locusts, a
crucial phenotypic difference is behavior. Individuals usually exist in
the solitarious behavioral phase and seek isolation; gregarious indi-
viduals, however, are attracted to others. Behavioral phase is tremen-
dously plastic [3, 7, 6], and the most important mediating external
influence is local population density. In sufficiently sparse surround-
ings a gregarious locust eventually acquires the crowd-avoiding pref-
erences of a solitarious one [7]. Conversely, in crowded surround-
ings, a solitarious locust develops attractive behavior. This can occur
when resource scarcity forces locusts to gather at nutritional sources,
overriding their solitary tendency.

At a more mechanistic level, experimentalists have uncovered
several types of stimuli responsible for gregarization, including vi-
sual, olfactory, and tactile. However, it is tactile stimulus that is most
effective in inducing gregarization, and more specifically, simulation
of the outer face of the insects’ hind femora [7, 8, 9]. Areas of the
body such as the mouth, face, and abdomen are often self-stimulated
by locusts during common behaviors such as walking, feeding, and
grooming, and thus should not induce phase change [8]. The hind
femora, however, are touched only by other insects, and it is plausible
that the frequency of touching increases in crowds. Mechanosensory
stimulation of nerves on the hind femora cause a cascade of serotonin
in the brain, leading to gregarious behavior [8, 9, 10].

Patchy clumps of vegetation that lead to crowing of locusts also
enhance their levels of activity and induce them to become gregarious
[11]. (This was often quantified as a correlation between the fractal
dimension of the vegetation and the locust behaviour [12]. Contact
or sight of locusts coming from behind enhances the tendency of a

locust to move [13]. A transition from solitarious to gregarious type
can be evoked by rubbing the hind leg of a locust for 5 sec every 60
sec during a period of 4 hrs [14]. Leaving a gregarious locust on its
own (unstimulated) for 4 hours results in a transition back to solitari-
ous.

There have been relatively few mathematical studies of locusts.
Both [15] and [16] constructed models for the rolling pattern formed
by flying locust groups. Work in [17] describes locust population
density with the logistic map (with no spatial dependence) and mod-
els phase change via a birth rate and a carrying capacity that depend
on population density and on stochastic effects. Work in [18] de-
scribes locusts within a confined arena using a self-propelled particle
model similar to the seminal one [?] in which the velocity of every
particle comes from averaging the velocities of neighboring particles
within a fixed interaction radius (plus a small amount of noise).

It is of critical importance to understand how an initially dis-
perse, solitarious population transitions to an aggregated, gregarious
one. Thus, our goal in this paper is to model and understand the inter-
play of the phase change dynamics that cause locusts to gregarize or
solitarize according to their local population density, and the spatial
dynamics that cause locusts to clump or disperse depending on their
behavioral phase.

Our mathematical framework follows the swarm modeling ap-
proach taken in, e.g., [?, 19]. A key element in swarms is social
interaction. Social forces such as attraction and repulsion [?, ?] re-
sult when animals communicate directly by sound, sight, smell or
touch, or indirectly via chemicals, vibrations, or other signals. A
given communication may be unidirectional (e.g., narrow sight) or
omnidirectional (e.g. hearing). Many organisms process a combina-
tion of inputs, which effectively results in omnidirectional communi-
cation [?, ?]. Modelers commonly assume that social interactions are
pairwise, and that the effect of multiple organisms on a given one is
given by superposition. Consider a swarm that is well-described by a
continuum density ρ(x, t) and subject only to social interactions. A
simple model is

ρt +∇ · (ρv) = 0, v = −∇Q ∗ ρ. [1]
Here, ρ is the population density, and the velocity v is determined

via a convolution (denoted by the asterisk). More explicitly,

v =

∫
Ω

−∇Q(x− y)ρ(y, t) dy, [2]

where Q is a social interaction potential describing the social in-
fluence of the population at location y on that at location x. If sens-
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ing is omnidirectional then Q has the appropriate symmetry. Eq. (1)
has been studied in [?, ?, ?] for specific choices of K, and in a two-
dimensional setting in [?]. More generally, [?] showed that (1) mani-
fests at least three different asymptotic behaviors, namely spreading,
steady state, and blow-up. The compactly supported steady states,
which may include jump discontinuities at the swarm’s edges, are
studied in depth in [19] in one spatial dimension.

The model that we presently consider extends (1) in two ways.
First, it couples together two density fields which each obey their
own (different) social interaction potential. Second, it incorporates
reaction terms, so that the model is no longer purely advective. Our
primary results are as follows... (need to complete once paper is fin-
ished).

The rest of this paper is organized as follows... (need to complete
once paper is finished).

The model
Consider a spatial domain Ω. Let s(x, t) represent the density of soli-
tary locusts, and g(x, t) the density of gregarious ones. The model
equations are

ṡ+∇ · (vss)= −f2(ρ)s+ f1(ρ)g, [3a]
ġ +∇ · (vgg)= f2(ρ)s− f1(ρ)g. [3b]

Define the total density

ρ = s+ g. [4]

Assume that velocities arise from pairwise, superposed social in-
teractions, and model them as

vs = −∇(Qs ∗ ρ), vg −∇(Qg ∗ ρ). [5]

Since solitarious locusts avoid crowds, they should display so-
cial repulsion. Gregarious locusts should display attraction coupled
with short range repulsion, in order to form finite aggregations. The
solitarious potential Qs and the gregarious potential Qg are

Qs(x) = Rs exp−|x|/rs, Qg(x) = Rg exp−|x|/rg−Ag exp−|x|/ag.
[6]

The parameters in Q(g) must be chosen in the clumping regime,
per the conditions stated in [?].

Now consider the density dependent rates of phase change. The
solitarization rate f1 should be high when local density is low, and
should approach zero when density is high. Conversely, the gre-
garization rate f2 should approach zero when local density low, and
should be significant when density is high. Adopt the functional
forms

f1(ρ) =
δ1

1 + (ρ/k1)2 , f2(ρ) =
δ2 (ρ/k2)2

1 + (ρ/k2)2 . [7]

Parameter Values
The African locust Schistocerca gregaria has body size of up to 7-
8cm. A recent paper by Bazazi et al [21] gives many parameters that
are directly useful in our model. The authors state that the speed
of a locust when it is alone varies from 2 to 6 cm/sec depending on
diet. At the upper end, this is roughly 1 body length (BL) per second.
When it is moving in a group, the speed varies in a tighter range of
4-6 cm/sec. The critical density for the onset of collective motion
is given in the range of 50 to 80 locusts /m2. Furhter, according to
Bazazi et al [21] and [22], the sensing range of a locust is 14 cm, and
the repulsion range is 4 cm, which coincides roughly with the body
size of the locust.

We used these parameters as follows: We used the experiments in
[14] to infer that the rate of transition from gregarious to solitarious
and vice versa is 1 per 4 hours, i.e. δ1 ≈ δ2 ≈ 0.25h−1. We con-
verted the critical area-density to a linear (1D) equivalent, obtaining
ρcrit ≈

√
50 to

√
80 which gives ρcrit ≈ 7 to 9 individuals per me-

ter. We thus took k1, k2 ≈ 8 locusts per meter as typical (1D) locust
density level at which 1/2-max transition rates take place. We took
the value of the repulsion ranges to be rs = rg =4cm = 0.04m, and
the range of attraction (for the gregarious locust form) as ag=14cm =
0.14 m.

In order to obtain estimates for the magnitudes of the Morse po-
tential termsRs, Rg, Ag (for the repulsive and attractive parts of each
potential) we made the following anzatz: We assumed that any locust
at x = 0 in a density field ρ = Heaviside(x) would move away
due to repulsion at rate v = −∇Qs ∗ ρ=6cm/sec=216m/hr. Evalu-
ating the integral and solving for Rs leads to Rs =[insert value].
We similarly assumed that a gregarious locust at x = 0 in a density
field ρ(x) = Heaviside(x − ag) (i.e. with a group just at the edge
of its sensing range) would move in the direction of that group with
speed v ≈ 4cm/sec=[??]. Combining the two equations for Rg and
Ag obtained thereby, we got []. THE LATTER PART OF THIS
NEEDS RETHINKING AND REVISION

Steady states and linear stability
There is a family of homogeneous steady states parameterized by the
total homogeneous density ρ0. For any given ρ0, the homogeneous
steady state is

s0 =
ρ0δ1k

2
1(k2

2 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

, g0 =
δ2ρ

3
0(k2

1 + ρ2)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

.

[8]
In the small ρ0 limit,

s0 ≈ ρ0 −
δ2
δ1k2

2

ρ3
0, g0 ≈

δ2
δ1k2

2

ρ,0 [9]

and thus the low-density steady state is composed mostly of soli-
tarious locusts. In the large ρ limit,

s0 ≈
δ1k

2
1

δ2

1

ρ0
, g0 ≈ ρ0 −

δ1k
2
1

δ2

1

ρ0
, [10]

and thus the high-density steady state is composed mostly of gre-
garious locusts.

We now calculate the linear stability of the homogeneous steady
state.

Let

s(x, t) = s0 + s1(x, t), g(x, t) = g0 + g1(x, t). [11]

Here, s1 and g1 are perturbations to the steady state. Also define

ρ(x, t) = ρ0 + ρ1(x, t) = s0 + g0 + s1(x, t) + g1(x, t). [12]

Substitute (11) and (12) into (3), assume the perturbations s1 and
g1 are small, i.e.,O(ε), and Taylor expand throughO(ε) to obtain the
linearized equations

ṡ1 = s0Qs ∗ ∇2(s1 + g1)−As1 +Bg1, [13a]
ġ1 = g0Qg ∗ ∇2(s1 + g1) +As1 −Bg1 [13b]

where

A = f2(ρ0) + f ′2(ρ0)s0 − f ′1(ρ0)g0 [14a]
B = f1(ρ0) + f ′1(ρ0)g0 − f ′2(ρ0)s0. [14b]
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Since f1 is monotonically decreasing and f2 is monotonically
increasing, f ′1(ρ0) < 0 and f ′2(ρ0) > 0 (excluding the trivial possi-
bility ρ0=0). Hence, A,B > 0.

To further analyze the equations, Fourier expand the perturba-
tions as

s1(x, t) =
∑
k

Sk(t) exp ik · x, s2(x, t) =
∑
k

Gk(t) exp ik · x.

[15]
The admissible wave vectors k depend on the chosen domain Ω.

In the event that Ω = Rn then all k are admissible (per the Fourier
transform). Substituting into (13) yields a set of ordinary differential
equations for each Fourier mode amplitude. These are conveniently
written in matrix form. Dropping the subscripts on S and G for sim-
plification of notation, we have

d

dt

(
S
G

)
= L(k)

(
S
G

)
, L(k) ≡

(
−s0k

2Q̂s(k)−A −s0k
2Q̂s(k) +B

−g0k
2Q̂g(k) +A −g0k

2Q̂g(k)−B

)
.

[16]
Here, k = |k| is the perturbation wave number, and Q̂s,g(k) are

the Fourier transforms of the social interaction potentials, that is,

Q̂s(k) = 2
Rsrs

1 + (rsk)2
, Q̂g(k) = 2

[
Rgrg

1 + (rgk)2
− Agra

1 + (rak)2

]
.

[17]
The eigenvalues of L(k) are

λ1(k) = −k2
[
s0Q̂s(k) + g0Q̂g(k)

]
, λ2 = −(A+B). [18]

The eigenvalue λ2 is negative since A,B > 0. Thus, the con-
stant density steady state is stable if λ1(k) < 0 for all admissible
k. If λ1(k) > 0 for some k, then the constant density steady state
is unstable to perturbations of those wave numbers. Factoring out a
power of −k2, the instability condition, then, is

s0Q̂s(k) + g0Q̂g(k) < 0. [19]

Crucially, this condition does not depend on the functions f1,2

which describe behavioral phase change. It only depends on the so-
cial interaction potentials ad on the relative amounts of solitary and
gregarious locusts.

Bulk theory for segregated states
In simulations of (3), we observe mass-balanced states in which gre-
garious and solitarious locusts spatially segregate. We attempt a
rough calculation of such solutions. The solitarious locusts are spread
throughout most of the domain Ω, covering an area we refer to as αs.
The gregarious locusts are concentrated in a clump whose area we
call αg , which may be estimated from the gregarious potential; see
(6). For convenience, define the total number of solitary locusts and
gregarious locusts,

S =

∫
Ω

s dΩ, G =

∫
Ω

g dΩ, [20]

and the total population mass M = S +G.
The local densities that solitarious and gregarious locusts sense

in their respective patches are

s = S/αs, g = G/αg. [21]

For a segregated state at mass balance, the number flux of gre-
garious locusts becoming solitarized per unit time is Gf1(G/αg).
Similarly, the number flux of solitarious locusts becoming gregarized
is Sf2(S/αs). Equating these expressions and substituting from (7)
yields

δ2S
3

α2
sk

2
2 + S2

=
δ1k

2
1α

2
gG

α2
gk

2
1 +G2

. [22]

To find the mass-balanced states, we must solve (22). To sim-
plify this calculation, we define the soliatious and gregarious mass
fractions

φs = S/M, φg = G/M, [23]

so that

φs + φg = 1. [24]

Substituting (23) into (22) and dividing through by M yields

c1φ
3
s

1 + c2φ2
s

=
c3φg

1 + c4φ2
g

. [25]

where

c1 =
δ2M

2

α2
sk

2
2

, c2 =
M2

α2
sk

2
2

, c3 = δ1, c4 =
M2

α2
gk

2
1

.

[26]

Discussion
THIS MATERIAL FROM LEK IS TEMPORARY AND NEEDS
TO BE EDITED, RERGANIZED, ETC] A recent general re-
view of models for aggregation based on attraction and repulsion is
provided by [23]. Purely theoretical models for swarming include
integro-differential equations [20]. Application of such ideas to fly-
ing locust swarms include [24] and [25].

As far as marching locusts, there have been a number of studies
in which data collected in the laboratory and theoretical models have
been combined. Most models concerned with alignment of locusts
moving in a group [26, 22, 27] as well as proportion of locusts mov-
ing at a given time [13, 21] depending on treatments such as diet and
denervation. The motivation in many of these models is to explore the
transition between a disordered and a coherent marching group capa-
ble of great destructive force. [26] formulated an abstract model of
collective motion, with repulsion and attraction that was then mod-
ified by [21] for locusts. The authors describe an individual-based
model with locust in 2 states (stopped, moving) with stochastic tran-
sitions. They consider that locusts sense others in a spatial range and
that this leads to an escape-dominated response with a parameter χ
that reflects the strength of social interactions. They take a repul-
sive range of 2 cm and assume that the strength of the repulsion is
χr=10cm/s2. They write a Langevin equation for the speed and ori-
entation of each locust. The main output of the model is proportion of
individuals moving and mean group speed as a function of the group
density. (The mean group speed varies sigmoidally (over the range
0-7 cm/sec) with density in the range of 0-100 locusts /m2.
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