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The African Locust Schistocerca gregaria is known to have two in-
terconvertible phases, solitarious and gregarious. Here we model
the spatio-temporal dynamics and treansitions between these two
phases. [ABSTRACT TO BE DONE LATER].
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Outbreaks of the desert locust Schistocerca gregaria have afflicted
vast areas across northern Africa, the Middle East and south-west
Asia for centuries. Depending on climate and vegetation conditions,
billions of these voracious insects may aggregate into destructive
swarms, typically covering a thousand of square kilometer areas and
traveling hundreds of kilometers a day, while leaving land mostly
outstripped of vegetation in their aftermath [1–4]. The latest locust
plague occurred in West Africa between 2003–2005 and severely dis-
rupted subsistence and export agriculture by destroying $2.5 billion
in crops. Despite $400 million spent in control efforts, in certain re-
gions loss rates escalated to 50% [5, 6]. These numbers alone attest to
the urgency of finding optimal ways to control, manage and possibly
predict outbreaks.

In their quiet periods, locusts are mainly solitary creatures who
live in arid regions and lay eggs in small breeding grounds lush with
vegetation, usually after seasonal rains or due to irrigation. Occa-
sionally, resources at these breeding grounds are abundant enough to
support a large number of hatchings, giving rise to a large adult lo-
cust population in a crowded area. The available supply of vegetation
and water at the breeding ground is eventually exhausted, and locusts
migrate en masse to other locations in search for nourishment, leav-
ing their typical trail of destruction behind. This phenomenon may
be exacerbated in periods of food scarcity, when large numbers of
locusts congregate in the same breeding and feeding ground.

From a biological point of view, desert locusts are phase
polyphenic: individuals of the same genotype display more than
one phenotypic form depending on external influences [7, 8]. For
desert locusts, relevant phenotypic differences are morphology [9],
coloration [10], reproductive features [11] and most significantly be-
havior [12, 13]. The latter can change from solitary where locusts
seek isolation to gregarious where individuals attract each other. Be-
havioral phase is tremendously plastic [3, 8, 12] and is strongly de-
pendent on local population density. In sufficiently sparse surround-
ings a gregarious locust eventually acquires the crowd-avoiding pref-
erences of a solitarious one [12] while in crowded surroundings, a
solitarious locust develops attractive behavior. It is this phenotype
switching mechanism that takes place when large numbers of locusts
gather at the same nutritional site, allowing them to override their
solitary tendency, transform into the gregarious form and swarm to-
gether.

At a more mechanistic level, experimentalists have uncovered
several types of stimuli responsible for gregarization, including vi-
sual, olfactory, and tactile. However, it is tactile stimulus that is most
effective in inducing gregarization, and more specifically, stimulation
of the outer face of the insects’ hind femora [12–14]. Areas of the
body such as the mouth, face, and abdomen are often self-stimulated
by locusts during common behaviors such as walking, feeding, and
grooming, and thus should not induce phase change [14]. The hind

femora, however, are touched only by other insects, and it is plausible
that the frequency of touching increases in crowds. Mechanosensory
stimulation of nerves on the hind femora cause a cascade of serotonin
in the brain, leading to gregarious behavior [13–15].

Patchy clumps of vegetation that lead to crowing of locusts also
enhance their levels of activity and induce them to become gregarious
[16]. (This was often quantified as a correlation between the fractal
dimension of the vegetation and the locust behaviour [17]. Contact
or sight of locusts coming from behind enhances the tendency of a
locust to move [18]. A transition from solitarious to gregarious type
can be evoked by rubbing the hind leg of a locust for 5 sec every 60
sec during a period of 4 hrs [14]. Leaving a gregarious locust on its
own (unstimulated) for 4 hours results in a transition back to solitari-
ous.

There have been relatively few mathematical studies of locusts.
Both [19] and [20] constructed models for the rolling pattern formed
by flying locust groups. Work in [21] describes locust population
density with the logistic map (with no spatial dependence) and mod-
els phase change via a birth rate and a carrying capacity that depend
on population density and on stochastic effects. Work in [22] de-
scribes locusts within a confined arena using a self-propelled particle
model similar to the seminal one [23] in which the velocity of every
particle comes from averaging the velocities of neighboring particles
within a fixed interaction radius (plus a small amount of noise).

It is of critical importance to understand how an initially dis-
perse, solitarious population transitions to an aggregated, gregarious
one. Thus, our goal in this paper is to model and understand the inter-
play of the phase change dynamics that cause locusts to gregarize or
solitarize according to their local population density, and the spatial
dynamics that cause locusts to clump or disperse depending on their
behavioral phase.

Our mathematical framework follows the swarm modeling ap-
proach taken in, e.g., [24, 25]. A key element in swarms is social
interaction. Social forces such as attraction and repulsion [26, 27]
result when animals communicate directly by sound, sight, smell or
touch, or indirectly via chemicals, vibrations, or other signals. A
given communication may be unidirectional (e.g., narrow sight) or
omnidirectional (e.g. hearing). Many organisms process a combina-
tion of inputs, which effectively results in omnidirectional communi-
cation [28, 29]. Modelers commonly assume that social interactions
are pairwise, and that the effect of multiple organisms on a given one
is given by superposition. Consider a swarm that is well-described by
a continuum density ρ(x, t) and subject only to social interactions. A
simple model is
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ρt +∇ · (ρv) = 0, v = −∇Q ∗ ρ. [1]

Here, ρ is the population density, and the velocity v is determined
via a convolution (denoted by the asterisk). More explicitly,

v =

∫
Ω

−∇Q(x− y)ρ(y, t) dy, [2]

where Q is a social interaction potential describing the social
influence of the population at location y on that at location x. If
sensing is omnidirectional then Q has the appropriate symmetry. Eq.
(1) has been studied in [30–32] for specific choices of K, and in a
two-dimensional setting in [33]. More generally, [24] showed that
(1) manifests at least three different asymptotic behaviors, namely
spreading, steady state, and blow-up. The compactly supported
steady states, which may include jump discontinuities at the swarm’s
edges, are studied in depth in [25] in one spatial dimension.

The model that we presently consider extends (1) in two ways.
First, it couples together two density fields which each obey their
own (different) social interaction potential. Second, it incorporates
reaction terms, so that the model is no longer purely advective. Our
primary results are as follows... (need to complete once paper is fin-
ished).

The rest of this paper is organized as follows... (need to complete
once paper is finished).

The model
Let s(x, t), x ≡ (x, y) represent the density of solitary locusts on
the ground, and g(x, t) the density of gregarious ones. The model
equations are

ṡ+∇ · (vss)= −f2(ρ)s+ f1(ρ)g, [3a]
ġ +∇ · (vgg)= f2(ρ)s− f1(ρ)g. [3b]

Define the total density
ρ = s+ g. [4]

Assume that velocities arise from pairwise, superposed social inter-
actions, and model them as

vs = −∇(Q2D
s ∗ ρ), vg −∇(Q2D

g ∗ ρ). [5]

Since solitarious locusts avoid crowds, they should display so-
cial repulsion. Gregarious locusts should display attraction coupled
with short range repulsion, in order to form finite aggregations. The
solitarious potential Q2D

s and the gregarious potential Q2D
g are

Q2D
s (x) = Rse−|x|/rs , Q2D

g (x) = Rge−|x|/rg −Age−|x|/ag .
[6]

Assume that variation in the swarm is negligible in one direc-
tion, which we take to be the y-direction. Then (3) reduces to one
dimension with interaction potentials that we refer to as quasi-two-
dimensional, as in [25]. The potentials are

Qs,g(x) =

∫ ∞
−∞

Qs,g(x, y) dy. [7]

and the velocity is

vs = −∂x(Qs ∗ ρ), vg − ∂x(Qg ∗ ρ). [8]

The parameters in Qg must be chosen in the clumping regime,
per the conditions stated in [24]. [Not the right condition anymore
since we are using quasi-2d.]

Now consider the density dependent rates of phase change. The
solitarization rate f1 should be high when local density is low, and

should approach zero when density is high. Conversely, the gre-
garization rate f2 should approach zero when local density low, and
should be significant when density is high. Adopt the functional
forms

f1(ρ) =
δ1

1 + (ρ/k1)2 , f2(ρ) =
δ2 (ρ/k2)2

1 + (ρ/k2)2 . [9]

Parameter Values
We draw upon the experimental results of [14] to estimate phase
change parameters in (9). Phase change from the gregarious to soli-
tarious state takes approximately four hours, and vice versa. Thus,
δ1 = δ2 = 1/4 = 0.25 h−1. The critical density for gregarization is
50 - 80 locusts /m2. We assume that the solitarization process has the
same critical density, and we set the characteristic density transition
scales to be k1 = k2 = 65 locusts /m2.

To estimate social interaction range parameters in (7), we apply
results of [22, 34], which identify the “sensing range” of a locust as
0.14 m, and the “repulsion range” as 0.04 m, on order with the ap-
proximately 0.08 m body length of a mature individual. We set our
repulsion length scales rs = rg = 0.04 m, corresponding to the ex-
perimental repulsion range. Since attraction typically operates over
longer scales, we take ag = 0.14 m, corresponding to the experi-
mental sensing range.

We find Rs, Rg , and Ag from explicit computations of velocity
under our model. The speed of a locust when it is alone varies from
72 - 216 m/hr, depending on diet [34]. At the upper end, this is
roughly 1 body length per second. To estimate Rs we imagine the
hypothetical semi-infinite density field ρ(x) = ρ0H(x). Here, H(x)
is the Heaviside function and ρ0 = 65 locusts /m2, the approximate
critical density of a gregarious group. A solitarious locust placed at
the origin, at the swarm’s edge, should move to the left with maximal
velocity vmax

s = −216 m/hr. We use the velocity definition (8) to
write

vs(0) = −∂x {Qs ∗ ρ0H(x)} |x=0 = vmax
s , [10]

which we solve to find Rs = 41.54 locusts·m2/hr. Similarly, a gre-
garious locust at the origin should move to the right with maximal
velocity vmax

g = 216 m/hr, and so

vg(0) = −∂x {Qg ∗ ρ0H(x)} |x=0 = vmax
g . [11]

A gregarious locust placed a short distance away from the swarm
equal to the attraction length scale should also move to the right, but
with a slower velocity which we take to be the minimal velocity in a
crowd, vmin

g = 144 m/hr. Thus

vg(−0.14) = −∂x {Qg ∗ ρ0H(x)} |x=−0.14 = vmin
g . [12]

Together, these two conditions determine Rg = 5.13 locusts·m2/hr
and Ag = 13.33 locusts·m2/hr

Steady states and linear stability
There is a family of homogeneous steady states parameterized by the
total homogeneous density ρ0. For any given ρ0, the homogeneous
steady state is

s0 =
ρ0δ1k

2
1(k2

2 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

, g0 =
δ2ρ

3
0(k2

1 + ρ2)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

.

[13]
In the small ρ0 limit,

s0 ≈ ρ0 −
δ2
δ1k2

2

ρ3
0, g0 ≈

δ2
δ1k2

2

ρ,0 [14]

and thus the low-density steady state is composed mostly of soli-
tarious locusts. In the large ρ limit,
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s0 ≈
δ1k

2
1

δ2

1

ρ0
, g0 ≈ ρ0 −

δ1k
2
1

δ2

1

ρ0
, [15]

and thus the high-density steady state is composed mostly of gre-
garious locusts.

We now calculate the linear stability of the homogeneous steady
state.

Let

s(x, t) = s0 + s1(x, t), g(x, t) = g0 + g1(x, t). [16]
Here, s1 and g1 are perturbations to the steady state. Also define

ρ(x, t) = ρ0 + ρ1(x, t) = s0 + g0 + s1(x, t) + g1(x, t). [17]
Substitute (16) and (17) into (??), assume the perturbations s1

and g1 are small, i.e., O(ε), and Taylor expand through O(ε) to ob-
tain the linearized equations

ṡ1 = s0Qs ∗ ∇2(s1 + g1)−As1 +Bg1, [18a]
ġ1 = g0Qg ∗ ∇2(s1 + g1) +As1 −Bg1 [18b]

where

A = f2(ρ0) + f ′2(ρ0)s0 − f ′1(ρ0)g0 [19a]
B = f1(ρ0) + f ′1(ρ0)g0 − f ′2(ρ0)s0. [19b]

Since f1 is monotonically decreasing and f2 is monotonically
increasing, f ′1(ρ0) < 0 and f ′2(ρ0) > 0 (excluding the trivial possi-
bility ρ0=0). Hence, A,B > 0.

To further analyze the equations, Fourier expand the perturba-
tions as

s1(x, t) =
∑
k

Sk(t)eik·x, s2(x, t) =
∑
k

Gk(t)eik·x. [20]

The admissible wave vectors k depend on the chosen domain Ω.
In the event that Ω = Rn then all k are admissible (per the Fourier
transform). Substituting into (18) yields a set of ordinary differential
equations for each Fourier mode amplitude. These are conveniently
written in matrix form. Dropping the subscripts on S and G for sim-
plification of notation, we have

d

dt

(
S
G

)
= L(k)

(
S
G

)
, L(k) ≡

(
−s0k

2Q̂s(k)−A −s0k
2Q̂s(k) +B

−g0k
2Q̂g(k) +A −g0k

2Q̂g(k)−B

)
.

[21]
Here, k = |k| is the perturbation wave number, and Q̂s,g(k) are

the Fourier transforms of the social interaction potentials, that is,

Q̂s(k) = 2
Rsrs

1 + (rsk)2
, Q̂g(k) = 2

[
Rgrg

1 + (rgk)2
− Agra

1 + (rak)2

]
.

[22]
The eigenvalues of L(k) are

λ1(k) = −k2
[
s0Q̂s(k) + g0Q̂g(k)

]
, λ2 = −(A+B). [23]

The eigenvalue λ2 is negative since A,B > 0. Thus, the con-
stant density steady state is stable if λ1(k) < 0 for all admissible
k. If λ1(k) > 0 for some k, then the constant density steady state
is unstable to perturbations of those wave numbers. Factoring out a
power of −k2, the instability condition, then, is

s0Q̂s(k) + g0Q̂g(k) < 0. [24]
Crucially, this condition does not depend on the functions f1,2

which describe behavioral phase change. It only depends on the so-
cial interaction potentials ad on the relative amounts of solitary and
gregarious locusts.

Bulk theory for segregated states
In simulations of (??), we observe mass-balanced states in which
gregarious and solitarious locusts spatially segregate. We attempt a
rough calculation of such solutions. The solitarious locusts are spread
throughout most of the domain Ω, covering an area we refer to as αs.
The gregarious locusts are concentrated in a clump whose area we
call αg , which may be estimated from the gregarious potential; see
(7). For convenience, define the total number of solitary locusts and
gregarious locusts,

S =

∫
Ω

s dΩ, G =

∫
Ω

g dΩ, [25]

and the total population mass M = S +G.
The local densities that solitarious and gregarious locusts sense

in their respective patches are

s = S/αs, g = G/αg. [26]

For a segregated state at mass balance, the number flux of gre-
garious locusts becoming solitarized per unit time is Gf1(G/αg).
Similarly, the number flux of solitarious locusts becoming gregarized
is Sf2(S/αs). Equating these expressions and substituting from (9)
yields

δ2S
3

α2
sk

2
2 + S2

=
δ1k

2
1α

2
gG

α2
gk

2
1 +G2

. [27]

To find the mass-balanced states, we must solve (27). To sim-
plify this calculation, we define the soliatious and gregarious mass
fractions

φs = S/M, φg = G/M, [28]

so that

φs + φg = 1. [29]

Substituting (28) into (27) and dividing through by M yields

c1φ
3
s

1 + c2φ2
s

=
c3φg

1 + c4φ2
g

. [30]

where

c1 =
δ2M

2

α2
sk

2
2

, c2 =
M2

α2
sk

2
2

, c3 = δ1, c4 =
M2

α2
gk

2
1

.

[31]

Discussion
THIS MATERIAL FROM LEK IS TEMPORARY AND NEEDS
TO BE EDITED, RERGANIZED, ETC] A recent general re-
view of models for aggregation based on attraction and repulsion is
provided by [35]. Purely theoretical models for swarming include
integro-differential equations [27]. Application of such ideas to fly-
ing locust swarms include [19] and [20].

As far as marching locusts, there have been a number of studies
in which data collected in the laboratory and theoretical models have
been combined. Most models concerned with alignment of locusts
moving in a group [22, 36, 37] as well as proportion of locusts mov-
ing at a given time [18, 34] depending on treatments such as diet and
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denervation. The motivation in many of these models is to explore the
transition between a disordered and a coherent marching group capa-
ble of great destructive force. [36] formulated an abstract model of
collective motion, with repulsion and attraction that was then mod-
ified by [34] for locusts. The authors describe an individual-based
model with locust in 2 states (stopped, moving) with stochastic tran-
sitions. They consider that locusts sense others in a spatial range and
that this leads to an escape-dominated response with a parameter χ
that reflects the strength of social interactions. They take a repul-
sive range of 2 cm and assume that the strength of the repulsion is
χr=10cm/s2. They write a Langevin equation for the speed and ori-
entation of each locust. The main output of the model is proportion of
individuals moving and mean group speed as a function of the group
density. (The mean group speed varies sigmoidally (over the range
0-7 cm/sec) with density in the range of 0-100 locusts /m2.
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