Desert locust dynamics: Behavioral phase change and swarming

Roberta Graff *, Javier de Ruiz Garcia ${ }^{\dagger}$, and Franklin Sonnery ${ }^{\dagger}$
*University of Cambridge, Cambridge, United Kingdom, and †Universidad de Murcia, Bioquimica y Biologia Molecular, Murcia, Spain
Submitted to Proceedings of the National Academy of Sciences of the United States of America

Abstract

The African Locust Schistocerca gregaria is known to have two interconvertible phases, solitarious and gregarious. Here we model the spatio-temporal dynamics and treansitions between these two phases. [ABSTRACT TO BE DONE LATER].

locust | phase change | swarm | gregarious | solitarious

Abbreviations:

Outbreaks of the desert locust Schistocerca gregaria have afflicted vast areas across northern Africa, the Middle East and south-west Asia for centuries. Depending on climate and vegetation conditions, billions of these voracious insects may aggregate into destructive swarms, typically covering a thousand of square kilometer areas and traveling hundreds of kilometers a day, while leaving land mostly outstripped of vegetation in their aftermath [1-4]. The latest locust plague occurred in West Africa between 2003-2005 and severely disrupted subsistence and export agriculture by destroying $\$ 2.5$ billion in crops. Despite $\$ 400$ million spent in control efforts, in certain regions loss rates escalated to $50 \%[5,6]$. These numbers alone attest to the urgency of finding optimal ways to control, manage and possibly predict outbreaks.

In their quiet periods, locusts are mainly solitary creatures who live in arid regions and lay eggs in small breeding grounds lush with vegetation, usually after seasonal rains or due to irrigation. Occasionally, resources at these breeding grounds are abundant enough to support a large number of hatchings, giving rise to a large adult locust population in a crowded area. The available supply of vegetation and water at the breeding ground is eventually exhausted, and locusts migrate en masse to other locations in search for nourishment, leaving their typical trail of destruction behind. This phenomenon may be exacerbated in periods of food scarcity, when large numbers of locusts congregate in the same breeding and feeding ground.

From a biological point of view, desert locusts are phase polyphenic: individuals of the same genotype display more than one phenotypic form depending on external influences [7, 8]. For desert locusts, relevant phenotypic differences are morphology [9], coloration [10], reproductive features [11] and most significantly behavior [12, 13]. The latter can change from solitary where locusts seek isolation to gregarious where individuals attract each other. Behavioral phase is tremendously plastic [3, 8, 12] and is strongly dependent on local population density. In sufficiently sparse surroundings a gregarious locust eventually acquires the crowd-avoiding preferences of a solitarious one [12] while in crowded surroundings, a solitarious locust develops attractive behavior. It is this phenotype switching mechanism that takes place when large numbers of locusts gather at the same nutritional site, allowing them to override their solitary tendency, transform into the gregarious form and swarm together.

At a more mechanistic level, experimentalists have uncovered several types of stimuli responsible for gregarization, including visual, olfactory, and tactile. However, it is tactile stimulus that is most effective in inducing gregarization, and more specifically, stimulation of the outer face of the insects' hind femora [12-14]. Areas of the body such as the mouth, face, and abdomen are often self-stimulated by locusts during common behaviors such as walking, feeding, and grooming, and thus should not induce phase change [14]. The hind
femora, however, are touched only by other insects, and it is plausible that the frequency of touching increases in crowds. Mechanosensory stimulation of nerves on the hind femora cause a cascade of serotonin in the brain, leading to gregarious behavior [13-15].

Patchy clumps of vegetation that lead to crowing of locusts also enhance their levels of activity and induce them to become gregarious [16]. (This was often quantified as a correlation between the fractal dimension of the vegetation and the locust behaviour [17]. Contact or sight of locusts coming from behind enhances the tendency of a locust to move [18]. A transition from solitarious to gregarious type can be evoked by rubbing the hind leg of a locust for 5 sec every 60 sec during a period of 4 hrs [14]. Leaving a gregarious locust on its own (unstimulated) for 4 hours results in a transition back to solitarious.

There have been relatively few mathematical studies of locusts. Both [19] and [20] constructed models for the rolling pattern formed by flying locust groups. Work in [21] describes locust population density with the logistic map (with no spatial dependence) and models phase change via a birth rate and a carrying capacity that depend on population density and on stochastic effects. Work in [22] describes locusts within a confined arena using a self-propelled particle model similar to the seminal one [23] in which the velocity of every particle comes from averaging the velocities of neighboring particles within a fixed interaction radius (plus a small amount of noise).

It is of critical importance to understand how an initially disperse, solitarious population transitions to an aggregated, gregarious one. Thus, our goal in this paper is to model and understand the interplay of the phase change dynamics that cause locusts to gregarize or solitarize according to their local population density, and the spatial dynamics that cause locusts to clump or disperse depending on their behavioral phase.

Our mathematical framework follows the swarm modeling approach taken in, e.g., $[24,25]$. A key element in swarms is social interaction. Social forces such as attraction and repulsion [26, 27] result when animals communicate directly by sound, sight, smell or touch, or indirectly via chemicals, vibrations, or other signals. A given communication may be unidirectional (e.g., narrow sight) or omnidirectional (e.g. hearing). Many organisms process a combination of inputs, which effectively results in omnidirectional communication [28, 29]. Modelers commonly assume that social interactions are pairwise, and that the effect of multiple organisms on a given one is given by superposition. Consider a swarm that is well-described by a continuum density $\rho(\mathbf{x}, t)$ and subject only to social interactions. A simple model is

Reserved for Publication Footnotes

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho \mathbf{v})=0, \quad \mathbf{v}=-\nabla Q * \rho \tag{1}
\end{equation*}
$$

Here, ρ is the population density, and the velocity \mathbf{v} is determined via a convolution (denoted by the asterisk). More explicitly,

$$
\begin{equation*}
\mathbf{v}=\int_{\Omega}-\nabla \mathbf{Q}(\mathbf{x}-\mathbf{y}) \rho(\mathbf{y}, t) d \mathbf{y} \tag{2}
\end{equation*}
$$

where \mathbf{Q} is a social interaction potential describing the social influence of the population at location \mathbf{y} on that at location \mathbf{x}. If sensing is omnidirectional then \mathbf{Q} has the appropriate symmetry. Eq. (1) has been studied in [30-32] for specific choices of K, and in a two-dimensional setting in [33]. More generally, [24] showed that (1) manifests at least three different asymptotic behaviors, namely spreading, steady state, and blow-up. The compactly supported steady states, which may include jump discontinuities at the swarm's edges, are studied in depth in [25] in one spatial dimension.

The model that we presently consider extends (1) in two ways. First, it couples together two density fields which each obey their own (different) social interaction potential. Second, it incorporates reaction terms, so that the model is no longer purely advective. Our primary results are as follows... (need to complete once paper is finished).

The rest of this paper is organized as follows... (need to complete once paper is finished).

The model

Let $s(\mathbf{x}, t), \mathbf{x} \equiv(x, y)$ represent the density of solitary locusts on the ground, and $g(\mathbf{x}, t)$ the density of gregarious ones. The model equations are

$$
\begin{align*}
& \dot{s}+\nabla \cdot\left(v_{s} s\right)=-f_{2}(\rho) s+f_{1}(\rho) g \tag{3a}\\
& \dot{g}+\nabla \cdot\left(v_{g} g\right)=f_{2}(\rho) s-f_{1}(\rho) g \tag{3b}
\end{align*}
$$

Define the total density

$$
\begin{equation*}
\rho=s+g \tag{4}
\end{equation*}
$$

Assume that velocities arise from pairwise, superposed social interactions, and model them as

$$
\begin{equation*}
v_{s}=-\nabla\left(Q_{s}^{2 D} * \rho\right), \quad v_{g}-\nabla\left(Q_{g}^{2 D} * \rho\right) . \tag{5}
\end{equation*}
$$

Since solitarious locusts avoid crowds, they should display social repulsion. Gregarious locusts should display attraction coupled with short range repulsion, in order to form finite aggregations. The solitarious potential $Q_{s}^{2 D}$ and the gregarious potential $Q_{g}^{2 D}$ are

$$
\begin{equation*}
Q_{s}^{2 D}(\mathbf{x})=R_{s} \mathrm{e}^{-|\mathbf{x}| / r_{s}}, \quad Q_{g}^{2 D}(\mathbf{x})=R_{g} \mathrm{e}^{-|\mathbf{x}| / r_{g}}-A_{g} \mathrm{e}^{-|\mathbf{x}| / a_{g}} \tag{6}
\end{equation*}
$$

Assume that variation in the swarm is negligible in one direction, which we take to be the y-direction. Then (3) reduces to one dimension with interaction potentials that we refer to as quasi-twodimensional, as in [25]. The potentials are

$$
\begin{equation*}
Q_{s, g}(x)=\int_{-\infty}^{\infty} Q_{s, g}(x, y) d y \tag{7}
\end{equation*}
$$

and the velocity is

$$
\begin{equation*}
v_{s}=-\partial_{x}\left(Q_{s} * \rho\right), \quad v_{g}-\partial_{x}\left(Q_{g} * \rho\right) . \tag{8}
\end{equation*}
$$

The parameters in Q_{g} must be chosen in the clumping regime, per the conditions stated in [24]. [Not the right condition anymore since we are using quasi-2d.]

Now consider the density dependent rates of phase change. The solitarization rate f_{1} should be high when local density is low, and
should approach zero when density is high. Conversely, the gregarization rate f_{2} should approach zero when local density low, and should be significant when density is high. Adopt the functional forms

$$
\begin{equation*}
f_{1}(\rho)=\frac{\delta_{1}}{1+\left(\rho / k_{1}\right)^{2}}, \quad f_{2}(\rho)=\frac{\delta_{2}\left(\rho / k_{2}\right)^{2}}{1+\left(\rho / k_{2}\right)^{2}} \tag{9}
\end{equation*}
$$

Parameter Values

We draw upon the experimental results of [14] to estimate phase change parameters in (9). Phase change from the gregarious to solitarious state takes approximately four hours, and vice versa. Thus, $\delta_{1}=\delta_{2}=1 / 4=0.25 h^{-1}$. The critical density for gregarization is $50-80$ locusts $/ m^{2}$. We assume that the solitarization process has the same critical density, and we set the characteristic density transition scales to be $k_{1}=k_{2}=65$ locusts $/ \mathrm{m}^{2}$.

To estimate social interaction range parameters in (7), we apply results of [22, 34], which identify the "sensing range" of a locust as 0.14 m , and the "repulsion range" as 0.04 m , on order with the approximately 0.08 m body length of a mature individual. We set our repulsion length scales $r_{s}=r_{g}=0.04 \mathrm{~m}$, corresponding to the experimental repulsion range. Since attraction typically operates over longer scales, we take $a_{g}=0.14 \mathrm{~m}$, corresponding to the experimental sensing range.

We find R_{s}, R_{g}, and A_{g} from explicit computations of velocity under our model. The speed of a locust when it is alone varies from $72-216 \mathrm{~m} / \mathrm{hr}$, depending on diet [34]. At the upper end, this is roughly 1 body length per second. To estimate R_{s} we imagine the hypothetical semi-infinite density field $\rho(x)=\rho_{0} \mathrm{H}(x)$. Here, $\mathrm{H}(x)$ is the Heaviside function and $\rho_{0}=65$ locusts $/ \mathrm{m}^{2}$, the approximate critical density of a gregarious group. A solitarious locust placed at the origin, at the swarm's edge, should move to the left with maximal velocity $v_{s}^{\max }=-216 m / h r$. We use the velocity definition (8) to write

$$
\begin{equation*}
v_{s}(0)=-\left.\partial_{x}\left\{Q_{s} * \rho_{0} \mathrm{H}(x)\right\}\right|_{x=0}=v_{s}^{\max }, \tag{10}
\end{equation*}
$$

which we solve to find $R_{s}=41.54$ locusts $\cdot m^{2} / h r$. Similarly, a gregarious locust at the origin should move to the right with maximal velocity $v_{g}^{\max }=216 \mathrm{~m} / \mathrm{hr}$, and so

$$
\begin{equation*}
v_{g}(0)=-\left.\partial_{x}\left\{Q_{g} * \rho_{0} \mathrm{H}(x)\right\}\right|_{x=0}=v_{g}^{\max } \tag{11}
\end{equation*}
$$

A gregarious locust placed a short distance away from the swarm equal to the attraction length scale should also move to the right, but with a slower velocity which we take to be the minimal velocity in a crowd, $v_{g}^{\text {min }}=144 \mathrm{~m} / \mathrm{hr}$. Thus

$$
\begin{equation*}
v_{g}(-0.14)=-\left.\partial_{x}\left\{Q_{g} * \rho_{0} \mathrm{H}(x)\right\}\right|_{x=-0.14}=v_{g}^{\min } \tag{12}
\end{equation*}
$$

Together, these two conditions determine $R_{g}=5.13$ locusts $\cdot \mathrm{m}^{2} / \mathrm{hr}$ and $A_{g}=13.33$ locusts $\cdot m^{2} / h r$

Steady states and linear stability

There is a family of homogeneous steady states parameterized by the total homogeneous density ρ_{0}. For any given ρ_{0}, the homogeneous steady state is
$s_{0}=\frac{\rho_{0} \delta_{1} k_{1}^{2}\left(k_{2}^{2}+\rho_{0}^{2}\right)}{\delta_{1} k_{1}^{2} k_{2}^{2}+\delta_{1} k_{1}^{2} \rho_{0}^{2}+\delta_{2} k_{1}^{2} \rho_{0}^{2}+\delta_{2} \rho_{0}^{4}}, \quad g_{0}=\frac{\delta_{2} \rho_{0}^{3}\left(k_{1}^{2}+\rho^{2}\right)}{\delta_{1} k_{1}^{2} k_{2}^{2}+\delta_{1} k_{1}^{2} \rho_{0}^{2}+\delta_{2} k_{1}^{2} \rho_{0}^{2}-}\left[\begin{array}{l}\text { 13 }]\end{array}\right.$
In the small ρ_{0} limit,

$$
\begin{equation*}
s_{0} \approx \rho_{0}-\frac{\delta_{2}}{\delta_{1} k_{2}^{2}} \rho_{0}^{3}, \quad g_{0} \approx \frac{\delta_{2}}{\delta_{1} k_{2}^{2}} \rho_{0}^{\prime} \tag{14}
\end{equation*}
$$

and thus the low-density steady state is composed mostly of solitarious locusts. In the large ρ limit,

$$
\begin{equation*}
s_{0} \approx \frac{\delta_{1} k_{1}^{2}}{\delta_{2}} \frac{1}{\rho_{0}}, \quad g_{0} \approx \rho_{0}-\frac{\delta_{1} k_{1}^{2}}{\delta_{2}} \frac{1}{\rho_{0}} \tag{15}
\end{equation*}
$$

and thus the high-density steady state is composed mostly of gregarious locusts.

We now calculate the linear stability of the homogeneous steady state.

Let

$$
\begin{equation*}
s(\mathbf{x}, t)=s_{0}+s_{1}(\mathbf{x}, t), \quad g(\mathbf{x}, t)=g_{0}+g_{1}(\mathbf{x}, t) \tag{16}
\end{equation*}
$$

Here, s_{1} and g_{1} are perturbations to the steady state. Also define

$$
\begin{equation*}
\rho(\mathbf{x}, t)=\rho_{0}+\rho_{1}(\mathbf{x}, t)=s_{0}+g_{0}+s_{1}(\mathbf{x}, t)+g_{1}(\mathbf{x}, t) \tag{17}
\end{equation*}
$$

Substitute (16) and (17) into (??), assume the perturbations s_{1} and g_{1} are small, i.e., $\mathcal{O}(\epsilon)$, and Taylor expand through $\mathcal{O}(\epsilon)$ to obtain the linearized equations

$$
\begin{align*}
& \dot{s}_{1}=s_{0} Q_{s} * \nabla^{2}\left(s_{1}+g_{1}\right)-A s_{1}+B g_{1} \tag{18a}\\
& \dot{g}_{1}=g_{0} Q_{g} * \nabla^{2}\left(s_{1}+g_{1}\right)+A s_{1}-B g_{1} \tag{18b}
\end{align*}
$$

where

$$
\begin{align*}
& A=f_{2}\left(\rho_{0}\right)+f_{2}^{\prime}\left(\rho_{0}\right) s_{0}-f_{1}^{\prime}\left(\rho_{0}\right) g_{0} \tag{19a}\\
& B=f_{1}\left(\rho_{0}\right)+f_{1}^{\prime}\left(\rho_{0}\right) g_{0}-f_{2}^{\prime}\left(\rho_{0}\right) s_{0} \tag{19b}
\end{align*}
$$

Since f_{1} is monotonically decreasing and f_{2} is monotonically increasing, $f_{1}^{\prime}\left(\rho_{0}\right)<0$ and $f_{2}^{\prime}\left(\rho_{0}\right)>0$ (excluding the trivial possibility $\left.\rho_{0}=0\right)$. Hence, $A, B>0$.

To further analyze the equations, Fourier expand the perturbations as

$$
\begin{equation*}
s_{1}(\mathbf{x}, t)=\sum_{\mathbf{k}} \mathcal{S}_{\mathbf{k}}(t) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}}, \quad s_{2}(\mathbf{x}, t)=\sum_{\mathbf{k}} \mathcal{G}_{\mathbf{k}}(t) \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} \tag{20}
\end{equation*}
$$

The admissible wave vectors \mathbf{k} depend on the chosen domain Ω. In the event that $\Omega=\mathbb{R}^{n}$ then all \mathbf{k} are admissible (per the Fourier transform). Substituting into (18) yields a set of ordinary differential equations for each Fourier mode amplitude. These are conveniently written in matrix form. Dropping the subscripts on \mathcal{S} and \mathcal{G} for simplification of notation, we have

Bulk theory for segregated states

In simulations of (??), we observe mass-balanced states in which gregarious and solitarious locusts spatially segregate. We attempt a rough calculation of such solutions. The solitarious locusts are spread throughout most of the domain Ω, covering an area we refer to as α_{s}. The gregarious locusts are concentrated in a clump whose area we call α_{g}, which may be estimated from the gregarious potential; see (7). For convenience, define the total number of solitary locusts and gregarious locusts,

$$
\begin{equation*}
S=\int_{\Omega} s d \Omega, \quad G=\int_{\Omega} g d \Omega \tag{25}
\end{equation*}
$$

and the total population mass $M=S+G$.
The local densities that solitarious and gregarious locusts sense in their respective patches are

$$
\begin{equation*}
s=S / \alpha_{s}, \quad g=G / \alpha_{g} \tag{26}
\end{equation*}
$$

For a segregated state at mass balance, the number flux of gregarious locusts becoming solitarized per unit time is $G f_{1}\left(G / \alpha_{g}\right)$. Similarly, the number flux of solitarious locusts becoming gregarized is $S f_{2}\left(S / \alpha_{s}\right)$. Equating these expressions and substituting from (9) yields

$$
\begin{equation*}
\frac{\delta_{2} S^{3}}{\alpha_{s}^{2} k_{2}^{2}+S^{2}}=\frac{\delta_{1} k_{1}^{2} \alpha_{g}^{2} G}{\alpha_{g}^{2} k_{1}^{2}+G^{2}} \tag{27}
\end{equation*}
$$

To find the mass-balanced states, we must solve (27). To simplify this calculation, we define the soliatious and gregarious mass fractions

$$
\begin{equation*}
\phi_{s}=S / M, \quad \phi_{g}=G / M \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi_{s}+\phi_{g}=1 \tag{29}
\end{equation*}
$$

Substituting (28) into (27) and dividing through by M yields

$$
\frac{d}{d t}\binom{\mathcal{S}}{\mathcal{G}}=\mathbf{L}(k)\binom{\mathcal{S}}{\mathcal{G}}, \quad \mathbf{L}(k) \equiv\left(\begin{array}{ll}
-s_{0} k^{2} \widehat{Q}_{s}(k)-A & -s_{0} k^{2} \widehat{Q}_{s}(k)+B \tag{21}\\
-g_{0} k^{2} \widehat{Q}_{g}(k)+A & -g_{0} k^{2} \widehat{Q}_{g}(k)-B
\end{array}\right)
$$

Here, $k=|\mathbf{k}|$ is the perturbation wave number, and $\widehat{Q}_{s, g}(k)$ are the Fourier transforms of the social interaction potentials, that is,
$\widehat{Q}_{s}(k)=2 \frac{R_{s} r_{s}}{1+\left(r_{s} k\right)^{2}}, \quad \widehat{Q}_{g}(k)=2\left[\frac{R_{g} r_{g}}{1+\left(r_{g} k\right)^{2}}-\frac{A_{g} r_{a}}{1+\left(r_{a} k\right)^{2}}\right]$.
[22]
The eigenvalues of $\mathbf{L}(k)$ are

$$
\begin{equation*}
\lambda_{1}(k)=-k^{2}\left[s_{0} \widehat{Q}_{s}(k)+g_{0} \widehat{Q}_{g}(k)\right], \quad \lambda_{2}=-(A+B) \tag{23}
\end{equation*}
$$

The eigenvalue λ_{2} is negative since $A, B>0$. Thus, the constant density steady state is stable if $\lambda_{1}(k)<0$ for all admissible k. If $\lambda_{1}(k)>0$ for some k, then the constant density steady state is unstable to perturbations of those wave numbers. Factoring out a power of $-k^{2}$, the instability condition, then, is

$$
\begin{equation*}
s_{0} \widehat{Q}_{s}(k)+g_{0} \widehat{Q}_{g}(k)<0 \tag{24}
\end{equation*}
$$

Crucially, this condition does not depend on the functions $f_{1,2}$ which describe behavioral phase change. It only depends on the social interaction potentials ad on the relative amounts of solitary and gregarious locusts.
where

$$
\begin{equation*}
\frac{c_{1} \phi_{s}^{3}}{1+c_{2} \phi_{s}^{2}}=\frac{c_{3} \phi_{g}}{1+c_{4} \phi_{g}^{2}} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
c_{1}=\frac{\delta_{2} M^{2}}{\alpha_{s}^{2} k_{2}^{2}}, \quad c_{2}=\frac{M^{2}}{\alpha_{s}^{2} k_{2}^{2}}, \quad c_{3}=\delta_{1}, \quad c_{4}=\frac{M^{2}}{\alpha_{g}^{2} k_{1}^{2}} \tag{31}
\end{equation*}
$$

Discussion

THIS MATERIAL FROM LEK IS TEMPORARY AND NEEDS TO BE EDITED, RERGANIZED, ETC] A recent general review of models for aggregation based on attraction and repulsion is provided by [35]. Purely theoretical models for swarming include integro-differential equations [27]. Application of such ideas to flying locust swarms include [19] and [20].

As far as marching locusts, there have been a number of studies in which data collected in the laboratory and theoretical models have been combined. Most models concerned with alignment of locusts moving in a group $[22,36,37]$ as well as proportion of locusts moving at a given time [18,34] depending on treatments such as diet and
denervation. The motivation in many of these models is to explore the transition between a disordered and a coherent marching group capable of great destructive force. [36] formulated an abstract model of collective motion, with repulsion and attraction that was then modified by [34] for locusts. The authors describe an individual-based model with locust in 2 states (stopped, moving) with stochastic transitions. They consider that locusts sense others in a spatial range and that this leads to an escape-dominated response with a parameter χ that reflects the strength of social interactions. They take a repulsive range of 2 cm and assume that the strength of the repulsion is $\chi_{r}=10 \mathrm{~cm} / \mathrm{s}^{2}$. They write a Langevin equation for the speed and orientation of each locust. The main output of the model is proportion of individuals moving and mean group speed as a function of the group density. (The mean group speed varies sigmoidally (over the range $0-7 \mathrm{~cm} / \mathrm{sec}$) with density in the range of $0-100$ locusts $/ \mathrm{m}^{2}$.

References

1. Kennedy JS (1951) The migration of the desert locust (Schistocerca gregaria Forsk). Proc Roy Soc Lond B 235:163-290.
2. Albrecht FO (1967) Les grands problemes de la biologie, in Polymorphisme phasaire et biologie des acridiens migrateurs (Masson, Paris).
3. Uvarov B (1977) Grasshoppers and locusts (Cambridge Univ Press, London) Vol. 2.
4. Rainey RC (1989) Migration and Meteorology: Flight Behavior and the Atmospheric Environment of Locusts and other Migrant Pests, Oxford Science Publications (Clarendon Press, Oxford).
5. Bell M (2005) The 2004 desert locust outbreak. Bull Am Meteor Soc 86:S60.
6. Brader L, et al. (2006) Towards a more effective response to desert locusts and their impacts on food security, livelihoods and poverty: Multilateral evaluation of the 2003-05 desert locust campaign, (United Nations Food and Agriculture Organization), Technical report.
7. Applebaum SW, Heifetz Y (1999) Density-dependent physiological phase in insects. Ann Rev Entomol 44:317-341.
8. Pener MP, Simpson SJ (2009) Locust phase polyphenism: An update. Adv Insect Physiol 36:1-272.
9. Dirsh VM (1953) Morphometric studies on phases of the desert locust (Schistocerca gregaria Forskal. Antilocust Bull 16:1-34.
10. Islam MS, Roessingh P, Simpson S J and McCaffery AR (1994b) Parental effects on the behavior and coloration of nymphs of the desert locust Schistocerca gregaria. J Insect Physiol 40:173-181.
11. Schmidt GH and Albutz R (1999) Identification of solitary and gregarious populations of the desert locust, Schistocerca gregaria, by experimental breeding. Entomol Gen 24:161-175.
12. Simpson SJ, McCaffery AR, Hagele BF (1999) A behavioral analysis of phase change in the desert locust. Biol Rev 74:461480.
13. Rogers S, et al. (2003) Mechanosensory-induced behavioural gregarization in the desert locust schistocerca gregaria. J Exp Bio 206:3991-4002.
14. Simpson SJ, Despland E, Hagele BF, Dodgson T (2001) Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci 98:3895-3897.
15. Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627-630.
16. Despland E, Collett M, Simpson S (2000) Small-scale processes in desert locust swarm formation: how vegetation patterns influence gregarization. Oikos 88:652-662.
17. Collett M, Despland E, Simpson S, Krakauer D (1998) Spatial scales of desert locust gregarization. Proc Natl Acad Sci 95:13052.
18. Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735-739.
19. Edelstein-Keshet L, Watmough J, Grunbaum D (1998) Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J Math Bio 36:515-549.
20. Topaz CM, Bernoff AJ, Logan S, Toolson W (2008) A model for rolling swarms of locusts. Eur Phys J Spec Top 157:93-109.
21. Holt J, Cheke R (1996) Models of desert locust phase changes. Ecol Model 91:131-137.
22. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402.
23. Czirøk, A et al (1996) Formation of complex bacterial colonies via self-generated vortices. Phys Rev E 54:1791-1801.
24. Leverentz AJ, Topaz CM and Bernoff AJ (2009) Asymptotic dynamics of attractive-repulsive swarms. SIAM J Appl Dyn Sys 8:880-908.
25. Bernoff AJ, Topaz CM (2011) A primer of swarm equilibria. SIAM J Appl Dyn Sys 10:212-250.
26. Breder C M (1954) Equations descriptive of fish schools and other animal aggregations. Ecol 35:361-370.
27. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38:534-570.
28. Eftimie R, de Vries G, Lewis M A, Lutscher F (2007) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69:1537-1565.
29. Partan SR, Marler P, (2005) Issues in the classification of multimodal communication signals. Am Nat 166:231-245.
30. Bertozzi AL, Laurent T, (2009) The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels. Chi Ann Math Ser B 30:463-482.
31. Bodnar M, Velasquez JJL, (2005) Derivation of macroscopic equations for individual cell-based models: a formal approach. Math Meth Appl Sci 28:1757-1779.
32. Bodnar M, Velasquez JJL, (2006) An integro-differential equation arising as a limit of individual cell-based models. J Diff Eq 222:341-380.
33. Topaz CM, Bertozzi AL, (2004) Swarming patterns in a twodimensional kinematic model for biological groups. SIAM J Appl Math 65:152-174.
34. Bazazi S, Romanczuk P, Thomas S, Schimansky-Geier L, Hale JJ, Miller GA et al. (2011) Nutritional state and collective motion: from individuals to mass migration. Proc Roy Soc B 278:356-363
35. Schellinck J, White T (2011) A review of attraction and repulsion models of aggregation: Methods, findings and a discussion of model validation. Ecol Mod 222:1897-1911
36. Romanczuk P, Couzin I, Schimansky-Geier L (2009) Collective motion due to individual escape and pursuit response. Phys Rev Lett 102:10602.
37. Yates AC, Erban R, Escudero C, Couzin ID, Buhl J, Kevrekidis IG et al (2009) Inherent noise can facilitate coherence in collective swarm motion. Proc Natl Acad Sci 106:5464-5469.
