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The African Locust Schistocerca gregaria is known to have two
interconvertible phases, solitary and gregarious. Individuals are
repelled (attracted) by others depending on their solitary (gregar-
ious) state, and crowding tends to bias conversion towards the
gregarious form. Here we model the spatio-temporal interactions
and transitions between the two phases using nonlocal (integro-
partial) differential equations. We use steady state and linear
stability analysis to characterize the conditions for onset of a lo-
cust “plague”, characterized by mass transition to the gregarious
form. Model reduction to approximate “bulk” theory allows us to
quantify the size and density of the emergent gregarious clusters,
and numerical simulations provide qualitative descriptions of the
swarm structure.
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Outbreaks of the desert locust Schistocerca gregaria regularly af-
flict vast areas of northern Africa, the Middle East and south-

west Asia. Depending on climate and vegetation conditions, billions
of voracious locusts aggregate into destructive swarms that span ar-
eas up to a thousand square kilometers. A locust swarm can travel a
few hundred kilometers per day, stripping crops and vegetation in its
desolate path [1–4]. The latest locust plague in West Africa (2003–
2005) severely disrupted agriculture, destroying $2.5 billion in crops
destined for both subsistence and export. Despite control efforts to-
talling $400 million, loss rates escalated to 50% in certain regions
[5, 6]. These numbers alone attest to the urgency of finding better
ways to predict, manage, and control locust plague outbreaks.

Between plagues, locusts are mainly solitary creatures who live
in arid regions and lay eggs in small breeding grounds lush with veg-
etation. Occasionally, resources are abundant enough to support nu-
merous hatchings, leading to a high density of adults. Overcrowd-
ing at resource sites promotes a transition to the gregarious phase,
in a self-reinforcing process. The available supply of vegetation
and water at the breeding ground is eventually exhausted, and lo-
custs migrate en masse to other locations in search for nourishment.
Within the newly formed swarm, individuals mantain their cohesive-
ness via direct sensory communication, or via chemical and vibra-
tional signaling [7–9]. Newly settled feeding grounds are also in-
evitably depleted, leading to several stop-and-go cycles of traveling
locust bands. Outbreaks may be exacerbated in periods of drought,
when large numbers of locusts congregate on the same breeding or
feeding grounds.

Desert locusts are phase polyphenic: while sharing the same
genotype, individuals may display different phenotypes [10, 11] such
as morphology [12], coloration [13], reproductive features [14] and
most significantly behavior [15, 16]. The latter can change from soli-
tary where locusts seek isolation to gregarious where they attract one
another. Behavioral state is plastic [3, 11, 15] and strongly dependent
on local population density: in sparse surroundings, a gregarious lo-
cust transforms into the solitary state [15] and vice–versa in crowded
environments. It is this phenotype switch that takes place when large
numbers of locusts gather at a site, promoting a massive change from
solitary to gregarious form and initiating the swarm plague [17, 18].

Locust gregarization is induced by visual and olfactory cues, but
a most potent stimulus is tactile: the repetitive stroking of the femora
of hind legs [15, 16, 19] is believed to function as a crowding indi-
cator. The mechanosensory stimulation of leg nerves leads to sub-
sequent serotonin cascades in the brain, and in turn to the onset of
gregarious behavior [16, 19, 20]. Furthermore, contact with individ-
uals coming from behind enhances the tendency of a stationary locust
to move [21]. In the laboratory, it has been shown that the solitary
to gregarious switch can be induced by rubbing a locust’s hind leg
for 5s per minute during a period of 4h [19]. Cessation of physical
contact leads to a transition back to the solitary state after 4h.

There have been relatively few mathematical studies of locust
behavior, especially of the switch between solitary and gregarious
phases in a spatio-temporal framework. Both [22] and [23] studied
the dynamics of rolling patterns formed by migrating locust groups.
Data driven models include the self-propelled particle model of [24]
where the observed transition between disordered to ordered locust
movement was described via well-known physics paradigms [25]. A
logistic map was introduced in [26] to describe population switch-
ing via a birth rate and a carrying capacity dependent on population
density modulated by stochastic effects. None of the previous studies
have focused on how an initially disperse, solitary locust population
spontaneously transitions into an aggregated, gregarious one. The
goal of this paper is to provide a mathematical description of such
behavioral phase changes by taking into account the most relevant bi-
ological findings and by including relevant spatial features that cause
locusts to clump or disperse.

OUR MAIN FINDING IS...

The model
As described above, locusts in a group are subject to attractive and/or
repulsive forces based on combined sensory, chemical, and mechani-
cal cues. Here we assume that such sensing is directionally isotropic,
a simplification used in many similar models [30, 31]. We represent
social forces as superimposed pairwise interactions and treat the lo-
cust population density ρ(x, t) (rather than individual locusts) using
a continuum approach. This standard representation provides us with
analytical tools that can be brought to bear on the problem of char-
acterizing the initiation and structure of a swarm. Our framework is
based on a common model for a swarm, given by

ρt +∇ · (ρv) = 0, v = −
Z

Ω

∇Q(x,x′)ρ(x′, t) dx′ [1]
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where x = (x, y) (e.g., in 2D) and the velocity v(x, t) of an individ-
ual at (x, t) depends on attraction-repulsion social interactions with
density of others in its vicinity. Such interactions are depicted as a
convolution with a social interaction fieldQ(x,x′) that describes the
influence of the population at location x′ on that at location x. We
use the notation v = −∇Q ∗ ρ to denote the above convolution and
assume that Q(|x − x′|) is radially symmetric and depends only on
the distance between x and x′. Eqn. [1] has been extensively stud-
ied in one and two dimensions for many specific interaction choices
[32–35]. Solutions generally include distinct regimes such as steady
state swarms, spreading, and blow-up [27, 28, 32].

To adapt Eqn. [1] to biphasic desert locust swarm dynamics, we
denote the density of solitary and gregarious locusts by s(x, t) and
g(x, t), respectively, and the total density by ρ = s + g. We also
include a density-dependent rate f1(ρ) to model the transition from
the gregarious to the solitary state and f2(ρ) for the opposite switch.
Our model thus reads

ṡ+∇ · (vss)= −f2(ρ)s+ f1(ρ)g, [2a]
ġ +∇ · (vgg)= f2(ρ)s− f1(ρ)g, [2b]

where the velocities are given by

vs = −∇(Qs ∗ ρ), vg −∇(Qg ∗ ρ). [3]

These equations are complete once we specify the form of Qs and
Qg . Since solitary locusts are crowd-avoiding we model their so-
cial interactions as purely repulsive. Gregarious locusts, on the other
hand, are assumed to be attracted to others, except for short distance
repulsions due to excluded volume effects. Hence, we let Qs and Qg

be described by the following Morse-type interactions

Qs(x) = Rse−|x|/rs , Qg(x) = Rge−|x|/rg −Age−|x|/ag . [4]

where Rs, Rg, Ag are interaction amplitudes and rs, rg and ag are
interaction length scales. For cohesiveness to occur, the param-
eters in Qg must be chosen in the so called “clumping regime”,
per the conditions stated in [8, 27, 29]. Specifically, we require
Rgag −Agrg > 0 so that repulsion dominates at short length scales,
and Aga

2
g − Rgr

2
g > 0 so that attraction dominates at longer ones.

We model fi=1,2(ρ) via Hill-type functions so that

f1(ρ) =
δ1

1 + (ρ/k1)2 , f2(ρ) =
δ2 (ρ/k2)2

1 + (ρ/k2)2 . [5]

Here, δi=1,2 are maximal rates and ki=1,2 are characteristic locust
densities at which the transitions occur at half of their maximal val-
ues. These choices allow f1 to be a decreasing function of ρ and
f2 to increase with ρ, saturating at δ2. Our complete model thus is
represented by Eqs. [2]-[5]. We analyze them in 1D and 2D, with
appropriate boundary conditions in a finite domain and with initial
conditions that specify s(x, 0) and g(x, 0).

Biological Parameter Values
In order to estimate phase change parameters in Eq. [5] we draw
upon the experimental results of [19]. Since phase changes be-
tween states take approximately four hours we estimate δ1 = δ2 =
0.25 h−1. The critical density for gregarization is reported to be
about 50 - 80 locusts /m2. We assume that the solitarization pro-
cess has the same critical density, and set k1 = k2 ≈ 65 locusts
/m2. To estimate the social interaction parameters in Eqs. [4], we
apply the results of [24, 36], who identify the “sensing range” of a
locust as 0.14 m, and the “repulsion range” as 0.04 m, of the same
order of magnitude as the approximately 0.08 m body length of a
mature individual. We set our repulsion length scales accordingly at
rs = rg = 0.04 m. Since attraction typically operates over longer

scales, we take ag = 0.14 m, corresponding to the experimental
sensing range.

Finally, we estimate Rs, Rg , and Ag from explicit velocity com-
putations under our model. The speed of a locust when it is alone
varies between 72 - 216 m/hr, depending on diet [36]. At the upper
end, this is roughly 1 body length per second. When it is moving in a
group, the speed varies in a tighter range of 144 - 216 m/hr [36]. To
estimate Rs we imagine the hypothetical semi-infinite density field
ρ(x) = ρ0H(x). Here, H(x) is the Heaviside function and ρ0 = 65
locusts /m2, the approximate critical density of a gregarious group.
A solitarious locust placed at the origin, at the swarm’s edge, should
move to the left with maximal velocity vmax

s = −216 m/hr. We use
the velocity definition Eq. [3] to write

vs(0, 0) = −∂x {Qs ∗ ρ0H(x)}
˛̨
(0,0)

= vmax
s , [6]

which we solve to find Rs = 11.87 locusts· m2/hr. Similarly, a gre-
garious locust at the origin should move to the right with maximal
velocity vmax

g = 216 m/hr, and so

vg(0, 0) = −∂x {Qg ∗ ρ0H(x)}
˛̨
(0,0)

= vmax
g . [7]

A gregarious locust placed at the attraction length scale ag = 0.14
should also move to the right, but with a slower velocity which we
take to be the minimal velocity in a crowd, vmin

g = 144 m/hr. Thus

vg(−0.14, 0) = −∂x {Qg ∗ ρ0H(x)}
˛̨
(−0.14,0)

= vmin
g . [8]

Together, these two conditions determine Rg = 5.13 locusts·m2/hr
and Ag = 13.33 locusts·m2/hr.

Homogeneous steady states
For any set of initial conditions, the mean locust density ρ0 is known,
and corresponds to the the total density at the homogeneous steady
state. Accordingly, there is a family of homogeneous steady states
parameterized by the total homogeneous density ρ0. The densities of
solitarious and gregarious forms are then

s0 =
ρ0δ1k

2
1(k2

2 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

[9a]

g0 =
δ2ρ

3
0(k2

1 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

. [9b]

In the small ρ0 limit,

s0 ≈ ρ0 − βρ3
0, g0 ≈ βρ0, β =

δ2
δ1k2

2

[10]

and thus the low-density steady state is composed mostly of solitari-
ous locusts. In the large ρ limit,

s0 ≈
1

βρ0
, g0 ≈ ρ0 −

1

βρ0
, [11]

and thus the high-density steady state is composed mostly of gregari-
ous locusts. These estimates already point to the nonmonotonicity of
s0 with total density.

Further evidence of this relationship is given in Fig. 1 where
s0, g0 are shown as functions of the total density ρ0. To obtain the
three sets of curves, we took a uniform distribution around each pa-
rameter, centered at the value estimated based on biological data,
with a range from 0.7 to 1.3 times this mean value. We drew 10,000
sample parameter sets and plotted three pairs of curves, correspond-
ing to 25, 50, and 75 percentile levels of the steady state value of s0

(in blue) and g0 (in green).
As noted, s0 at first increases with ρ0, as both solitarious and gre-

garious locusts accumulate. Beyond some total density, s0 reaches a
maximum and starts to decrease, whereas g0 keeps growing. From
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a biological point of view, this model prediction implies that homo-
geneous solitary groups can only exist up to some total density, be-
yond which gregarization dominates. While for the chosen functions
fi, closed form expression for the maximum cannot be obtained, the
special case k1 = k2 = k and δ1 = δ2 = δ (as in our biologically
estimated parameters) leads to max(ρ0, s0) = (k, k/2).

[PUT IN SUPPLEMENT?] We can look for an approximate
solution when k1,2 and δ1,2 are each slightly detuned from equality.
The basic idea is to expand everything in a power series in a small pa-
rameter ε. Take the formula for s0 from Eq. 9a, differentiate it, and
set it equal to zero to look for the critical point. This is our governing
equation. Then expand everything in a power series. Without loss of
generality, we can do this as

k1 = k + εK, k2 = k − εK, [12a]
δ1 = δ + ε∆, δ2 = δ − ε∆, [12b]

ρ0 = ρ00 + ερ01. [12c]

Substituting the power series into the equation for s′ and solving at
O(1) and O(ε) yields

ρ00 = k, ρ01 = K +
∆k

δ
. [13]

Thus, the maximum solitarious density occurs at ρ0 ≈ k + K +
∆k/δ. Substituting back into the original formula for s0 and keeping
through O(ε) gives us the maximum steady state solitarious density,
which is smax ≈ k/2 + ∆k/(2δ).

I’ve checked how good this approximation is vis-a-vis the param-
eter sensitivities. That is, I’ve set k = 65 and δ = 0.25. I’ve let the
deviation K be as large as 0.3k and the deviation ∆ be as large as
0.3δ – that is, I’ve considered up to 30% deviation from the mean val-
ues. Comparing the exact (numerical) values for the critical point’s
coordinates to the approximate values, you get up to 20% error for
the ρ0 coordinate and 15% error for the s coordinate.

Another interesting feature of the graph of s0 and g0 is that there
is a point of equality between the two curves. By setting s0 = g0 in
Eq. 9 and rejecting the trivial case ρ0 = 0, one finds one positive
solution, which is that s0 = g0 when

ρ0 =
k1

2δ2

“
δ1 − δ2 +

p
(δ1 − δ2)2 + 4δ1δ2(k2/k1)2

”
. [14]

This solution is exact (no assumptions or approximations are neces-
sary). In the white and grey region of Fig. 9, s0 > g0 at the 50th
percentile, and the reverse is true in the pink region. The solid, verti-
cal purple lines lines show the 25th and 75th percentile of the equality
point.

Linear stability analysis
To study stability of the steady state solution, we consider small per-
turbations, s1, g1, ρ1. Set

s(x, t) = s0 + s1(x, t), g(x, t) = g0 + g1(x, t), [15]

ρ(x, t) = ρ0 + ρ1(x, t) = s0 + g0 + s1(x, t) + g1(x, t). [16]

Substitute Eqn. [15] and Eqn. [16] into [2], assume s1 and g1 are
small, i.e., O(ε), and Taylor expand through O(ε) to obtain the lin-
earized equations

ṡ1 = s0Qs ∗ ∇2(s1 + g1)−As1 +Bg1, [17a]
ġ1 = g0Qg ∗ ∇2(s1 + g1) +As1 −Bg1 [17b]

where

A = f2(ρ0) + f ′2(ρ0)s0 − f ′1(ρ0)g0 [18a]
B = f1(ρ0) + f ′1(ρ0)g0 − f ′2(ρ0)s0. [18b]

Since f1 is monotonically decreasing and f2 is monotonically in-
creasing, f ′1(ρ0) < 0 and f ′2(ρ0) > 0 (excluding the trivial possibil-
ity ρ0=0). Hence, A,B > 0.

To further analyze the equations, Fourier expand the perturba-
tions as

s1(x, t) =
X
k

Sk(t)eik·x, s2(x, t) =
X
k

Gk(t)eik·x. [19]

The admissible wave vectors k depend on the chosen domain Ω. In
the event that Ω = Rn then all k are admissible (per the Fourier
transform). Substituting into Eqn. [17] yields a set of ordinary dif-
ferential equations for each Fourier mode amplitude. These are con-
veniently written in matrix form. Dropping the subscripts on S and
G for simplification of notation, we have

d

dt

„
S
G

«
= L(k)

„
S
G

«
, [20a]

L(k) ≡
„
−s0k

2 bQs(k)−A −s0k
2 bQs(k) +B

−g0k
2 bQg(k) +A −g0k

2 bQg(k)−B

«
. [20b]

Here, k = |k| is the perturbation wave number, and bQs,g(k) are the
Fourier transforms of the social interaction potentials, that is,

bQs(k) = 2π
Rsr

2
s

(1 + r2
sk2)3/2

, [21a]

bQg(k) = 2π

»
Rgr

2
g

(1 + (r2
gk2)3/2

−
Aga

2
g

(1 + a2
gk2)3/2

–
.[21b]

The eigenvalues of L(k) are

λ1(k) = −k2
h
s0
bQs(k) + g0

bQg(k)
i
, λ2 = −(A+B). [22]

The eigenvalue λ2 is negative since A,B > 0. Thus, the constant
density steady state is stable if λ1(k) < 0 for all admissible k. If
λ1(k) > 0 for some k, then the constant density steady state is un-
stable to perturbations of those wave numbers. Crucially, this piv-
otal eigenvalue λ1(k) does not depend on the functions f1,2 which
describe behavioral phase change. It only depends on the social in-
teraction potentials and on the relative mean densities of solitary and
gregarious locusts.

We can further analyze this eigenvalue. The possible unstable
wave numbers k are those satisfying λ1(k) > 0, where

λ1(k) = −2πk2× [23]»
s0Rsr

2
s

(1 + k2r2
s)3/2

+
g0Rgr

2
g

(1 + k2r2
g)3/2

−
g0Aga

2
g

(1 + k2a2
g)3/2

–
where we have substituted for bQg(k) and bQs(k). [CHECK THAT
THIS IS FOR 2D POTENTIALS AND SAY THAT.]

In order to make analytical progress we set k1 = k2 = h and
δ1 = δ2 = δ. The use of h is to avoid confusion with the wavelength
k. We also use the fact that rs = ag . These equalities all hold for
our biologically estimated parameters. Later it will be useful to re-
call that within our model rg < rs. Inserting these simplifications,
we find

λ1(k) =
2πRgρ

3
0r

2
gk

2

(h2 + ρ2
0)(1 + k2r2

s)3/2
[M −m(k)] [24]

where

M =
ρ2

0Agr
2
s − h2Rsr

2
s

Rgρ2
0r

2
g

, m(k) =
(1 + k2r2

s)3/2

(1 + k2r2
g)3/2

. [25]
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Sincem(k) > 0, for instability to occur we must requireM > 0,
otherwise λ1(k) will always be negative. This necessary (but not suf-
ficient) condition translates to

ρ0 >

s
Rs

Ag
h [26]

which in our case for Rs = 11.87, Ag = 13.3 (units of locusts
m2/hr) and h = 65 /m2[UNITS OK?] implies that if ρ0 ≤ 61.4
locusts/m2, the system is stable to perturbations of all wave numbers.
This provides the critical density for clustering and swarm initiation.

Let us now look at the terms inside the square brackets of
Eqn. [24]. We know that rg < rs. This implies that the function
m(k) is monotonically increasing. Hence, for λ1(k) to be positive, it
is also necessary thatM be greater than the minimum value ofm(k),
attained at k = 0. Thus, a more stringent condition is that

M > m(k = 0) = 1. [27]

Using the fact thatm(k →∞) = r3
s/r

3
g > 1 we can now distinguish

three cases:

• if M < 1 then λ(k) < 0 and the homogeneous steady state is
stable to perturbations of all wave numbers.

• if 1 ≤ M ≤ r3
s/r

3
g then instabilities will arise for perturbations

with wave numbers in a band extending from k = 0 to some finite
k.

• if M > r3
s/r

3
g then the system is unstable to perturbations of any

wave number.

The condition M > 1 that guarantees instability can be rewritten as

ρ0 >

„
Rs

Ag −Rg(rg/rs)2

«1/2

h [28]

so that, we are now guaranteed instability as long as ρ0 > 61.4,
close to the 50th percentile value of ρ0 = 57.5 in Fig. 1, which is the
left border of the grey region. [CHAD IS CONSIDERING: WHY
AREN’T THEY CLOSER?] The vertical black dashed lines indicate
the 25th and 75th percentile values for the onset of instability. Note
that at the 50th percentile level, instability occurs before g0 overtakes
s0 in value.

Fig. 2 shows the most unstable wave number kmax as a function
of ρ0. This wavenumber would be characterize the cluster diameter
of the swarm as it is first initiated. [BRIEFLY EXPLAIN HOW
OBT’D]. For low densities, the most unstable wavenumber is 0, in-
dicating that large wavelength aggregation zones destabilize first. As
ρ0 increases, there is a sharp transition region in which kmax grows
rapidly. Here, clusters of some finite size would be seen. We fur-
ther observe that kmax levels to a plateau value. (As before, the
three curves in Fig. 2 are the 25th, 50th, and 75th percentile val-
ues as parameters are varied). At the 50th percentile value the large
ρ0 asymptotic value of kmax is kmax = 8.9. [GIVE UNITS AND
INDICATE PREDICTED CLUSTER DIAMETERS.]

Maximum Instability
[INCLUDE IN SUPPLEMENT?]

Bulk theory for segregated states
In simulations of [2], we observe mass-balanced states in which gre-
garious and solitarious locusts spatially segregate into regions with
disjoint support. This means that in the given regions ρ ≈ s or
ρ ≈ g. We can approximate this behaviour with the following “bulk”
state model reduction. For convenience, define the total number of
solitary locusts and gregarious locusts,

S =

Z
Ω

s dΩ, G =

Z
Ω

g dΩ, [29]

the total population mass M = S +G, and the mass fractions

φs = S/M, φg = G/M, φs + φg = 1. [30]

We assume that solitarious locusts are spread throughout most of the
domain Ω, covering an area denoted αs, whereas gregarious locusts
clumped in a region whose area we call αg . (This area can be esti-
mated from the gregarious potential; see [4].) Then in these regions,
local densities are approximately

s = S/αs, g = G/αg. [31]

Consider Eqs. [2] and integrate over the domain. Then the spa-
tial terms vanish, and, using ρ ≈ s or ρ ≈ g in the disjoint regions,
we have Z

ṡ = −
Z
f2(s)s+

Z
f1(g)g, [32a]Z

ġ =

Z
f2(s)s−

Z
f1(g)g. [32b]

Further assuming that s, g are approximately constant in the regions
of their support, we can use [29] and using [31], we can rewrite this
as Now use [31] to write

Ṡ = −f2(S/αs)S + f1(G/αg)G, [33a]

Ġ = f2(S/αs)S − f1(G/αg)G. [33b]

Now let S = Mφs, G = Mφg from [30] to obtain (after cancelling
a factor of M):

φ̇s = −f2(Mφs/αs)φs + f1(Mφg/αg)φg, [34a]

φ̇g = f2(Mφs/αs)φs − f1(Mφg/αg)φg. [34b]

Now substitute in the definitions of f1, f2 from [5] to obtain

φ̇s = − c1φ
3
s

1 + c2φ2
s

+
c3φg

1 + c4φ2
g

, [35a]

φ̇g =
c1φ

3
s

1 + c2φ2
s

− c3φg

1 + c4φ2
g

. [35b]

where ci are given by

c1 =
δ2M

2

α2
sk

2
2

, c2 =
M2

α2
sk

2
2

, c3 = δ1, c4 =
M2

α2
gk

2
1

.

[36]
The ODEs [35] can be used to compute the steady state fractions
φs, φg by setting LHS to zero in each equation. Here we consider the
dynamics of this system. It is possible to reduce this to a single equa-
tion using φs = 1−φg , though the result is is complicated. An easier
approach is to consider the large M limit, in which [35] becomes (to
leading order)

φ̇s = −δ2φs +
c3
c4φg

, [37a]

φ̇g = δ2φs −
c3
c4φg

. [37b]

Noting the values of the constants in [37], and the fact that 0 ≤
φs, φg ≤ 1 are dimensionless, we observe that the first term is of
O(1) whereas the second term is of O(1/M2). This means that, to
leading order, for largeM , the mass fraction of the solitarious locusts
decays exponentially in time. This is based on the assumption of a
segregated state, and would be expected to occur once segregation is
nearly complete.

In short, for large M, the entire population will eventually be-
come gregarious. This implies that the level ρ0 that leads to insta-
bility is crucial. If the state of the population is in the stable regime,
mass gregarization can be avoided. As soon as the population shifts
beyond the border of stability (at which φs ≈ φg), there is no avoid-
ing the gregarization of the entire group.
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Discussion
TEMPORARY.. TO BE WRITTEN AFTER RESULTS COL-
LECTED] A recent general review of models for aggregation based
on attraction and repulsion is provided by [37]. Purely theoretical
models for swarming include integro-differential equations [9]. Ap-
plication of such ideas to flying locust swarms include [22] and [23].

As far as marching locusts, there have been a number of studies
in which data collected in the laboratory and theoretical models have
been combined. Most models concerned with alignment of locusts
moving in a group [24, 38, 39] as well as proportion of locusts mov-
ing at a given time [21, 36] depending on treatments such as diet and
denervation. The motivation in many of these models is to explore the
transition between a disordered and a coherent marching group capa-
ble of great destructive force. [38] formulated an abstract model of
collective motion, with repulsion and attraction that was then mod-
ified by [36] for locusts. The authors describe an individual-based
model with locust in 2 states (stopped, moving) with stochastic tran-
sitions. They consider that locusts sense others in a spatial range and
that this leads to an escape-dominated response with a parameter χ
that reflects the strength of social interactions. They take a repul-
sive range of 2 cm and assume that the strength of the repulsion is
χr=10cm/s2. They write a Langevin equation for the speed and ori-
entation of each locust. The main output of the model is proportion of
individuals moving and mean group speed as a function of the group
density. (The mean group speed varies sigmoidally (over the range
0-7 cm/sec) with density in the range of 0-100 locusts /m2.
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Fig. 1. Uniform steady state (SS) levels of solitary locusts, s0 (blue) and gregarious
locusts, g0 (green) as functions of the mean locust density ρ0 on a log-log plot. The
three curves represent the 25, 50 and 75 percentile of the SS value obtained using a
uniform distribution centered at parameter values estimated from biological data, with a
range±30%. The steady state is stable in the white region and unstable in the red region.
Vertical dashed lines are 25th and 75th percentile values for onset of instability. At the 50th
percentile, instability occurs before the value of g0 overtakes s0.

Fig. 2. Maximally unstable wavelength. At low densities, only the wavenumber k = 0 is
unstable. Near the critical density, kmax increases rapidly to some constant value as the
density increases. Three curves correspond to same percentile values as in Fig 1
.
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